Algebra Preliminary Examination

January 2022

Attempt all questions, and justify each answer.

Part I

1. Let $G$ be a group of order $5175 = 3^2 \cdot 5^3 \cdot 23$. Prove that if $H$ is a normal subgroup of order $23$ in $G$, then $H$ is contained in the center of $G$.

2. Let $G$ be a group of order $2k$, where $k$ is an odd positive integer. For each element $g \in G$ let $\sigma_g$ denote the permutation $x \mapsto gx$ of $G$, and let $I' = \{ \sigma_g \mid g \in G \}$.
   (a) Prove that $I'$ contains an odd permutation.
   (b) Prove that $G$ has a subgroup of order $k$.

Part II

1. Let $R$ be the ring $\mathbb{Z}[\sqrt{2}]$, consisting of all real numbers $a + b\sqrt{2}$ with $a, b \in \mathbb{Z}$. Prove that $R$ is a Euclidean domain, with respect to the norm $N(a + b\sqrt{2}) = |a^2 - 2b^2|$.

2. Let $R$ be a commutative ring with $1 \neq 0$. Prove that if every proper ideal of $R$ is a prime ideal, then $R$ is a field.

Part III

1. Let $R$ be a commutative ring with $1 \neq 0$. It is assumed that for each ideal $I$ of $R$ the quotient ring $R/I$ is given the natural $R$–module structure $r(x + I) = (rx) + I$.
   (a) Let $I, J$ be ideals of $R$. Prove that $R/I \otimes_R R/J, R/(I + J)$ are isomorphic as $R$–modules.
   (b) Let $M_1, M_2$ be distinct maximal ideals of $R$. Prove that $R/M_1 \otimes_R R/M_2 = 0$.

2. Let $R$ be the polynomial ring $\mathbb{Z}[x]$, and let $I = (2, x)$, the ideal of $R$ generated by the elements $2, x$. Define $R$–module homomorphisms $\sigma : R \to R \oplus R, \tau : R \oplus R \to I$ as follows:
   \[
   \sigma(h) = (xh, -2h), \quad \tau(f, g) = 2f + xg.
   \]
   (a) Prove that $0 \to R \overset{\sigma}{\to} R \oplus R \overset{\tau}{\to} I \to 0$ is a short exact sequence of $R$–module homomorphisms.
   (b) Prove that $I$ is not a projective $R$–module.

Part IV

In this part, $x$ denotes an indeterminate.

1. Let $f \in \mathbb{Q}[x]$ be irreducible, with splitting field $E$ over $\mathbb{Q}$. Assume that the degree of $E$ over $\mathbb{Q}$ is an odd integer, and that $E$ contains an intermediate field $K$ with $[K : \mathbb{Q}] = 3$. Prove that the irreducible factors of $f$, considered as a polynomial over $K$, all have the same degree.
   Hint: First show that $K$ is a normal extension of $\mathbb{Q}$.

2. Let $G$ be the Galois group of the polynomial $f = x^4 + 2x^2 + 4 \in \mathbb{Q}[x]$. Determine the order of $G$, and describe how each element of $G$ permutes the roots of $f$.
Part I

1. Let $G$ be a group. Recall that the \textit{commutator subgroup} $[G, G]$ of $G$ is the subgroup generated by all commutators $[g_1, g_2] = g_1^{-1} g_2^{-1} g_1 g_2$ ($g_1, g_2 \in G$). Also recall that a subgroup $H$ of $G$ is \textit{characteristic in} $G$, written $H \text{ char } G$, if each automorphism of $G$ maps $H$ onto itself.

   (a) Define subgroups $G^{(n)}$ ($n \in \mathbb{Z}, n \geq 0$) inductively as follows:
   
   $$G^{(0)} = G, \quad G^{(n+1)} = [G^{(n)}, G^{(n)}].$$

   Prove that $G^{(n)} \text{ char } G$ for all $n \geq 0$.

   (b) Suppose that $G$ is a non-trivial finite group, such that $G^{(n)} = 1$ for some $n > 0$. Prove that $G$ has a non-trivial characteristic subgroup of prime power order. (\textit{Hint}: consider the subgroup $G^{(n-1)}$, where $n$ is the smallest integer for which $G^{(n)} = 1$.)

2. The \textit{holomorph} of a group $G$, denoted $\text{Hol}(G)$, is defined to be the semidirect product $G \rtimes \text{Aut}(G)$, where $\phi : \text{Aut}(G) \rightarrow \text{Aut}(G)$ is the identity map. Thus we may identify $\text{Aut}(G)$ with the subgroup $K = \{(1, \sigma) : \sigma \in \text{Aut}(G)\}$ of the semidirect product $\text{Hol}(G)$. As usual we identify $G$ with the (normal) subgroup $\{(g, 1) : g \in G\}$ of $\text{Hol}(G)$.

   Let $G = \{1, z_1, z_2, z_3\}$ be the non-cyclic group of order 4 (i.e. $G$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$). Prove that $\text{Hol}(G)$ is isomorphic to the symmetric group $S_4$. (\textit{Hint}: Consider the action by left multiplication of $\text{Hol}(G)$ on the four left cosets $K, z_1 K, z_2 K, z_3 K$ of $K$.)

Part II

1. Let $R$ be an integral domain with the property that every ideal generated by two elements of $R$ is principal.

   (a) Prove that every finitely generated ideal of $R$ is principal.

   (b) Suppose that $R$ also satisfies the ascending chain condition on principal ideals, \textit{i.e.} given any chain of principal ideals $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$, there exists a positive integer $k$ such that $I_k = I_{k+n}$ for all positive integers $n$. Prove that $R$ is a principal ideal domain.

2. Recall that an element $e$ of a ring $R$ is \textit{idempotent} if $e^2 = e$. In this question all rings are assumed to be commutative and with $1 \neq 0$.

   (a) Let $R$ be a ring containing an idempotent $e$ distinct from $0, 1$. Prove that $R$ is isomorphic to a direct product of two rings. (\textit{Hint}: if $e$ is idempotent, then so is $1 - e$.)

   (b) Suppose that $R$ is a finite ring and that every element of $R$ is idempotent. Prove that $R$ is isomorphic to the direct product of finitely many copies of the field with two elements.
Part III  

In this part, all \( R \)-modules \( M \) are assumed to be unital, i.e. \( 1.m = m \) for all \( m \in M \).

1. Recall that given left \( R \)-modules \( D, M, N \), an \( R \)-module homomorphism \( \phi : M \to N \) induces a homomorphism of Abelian groups \( \phi' : \text{Hom}_R(D, M) \to \text{Hom}_R(D, N) \) given by \( \phi'(\alpha) = \phi \circ \alpha \).

Let \( R \) be a ring with \( 1 \neq 0 \) and let \( D, L, M, N \) be left \( R \)-modules. Prove that if the sequence

\[
0 \to L \xrightarrow{\phi} M \xrightarrow{\psi} N \to 0
\]

of module homomorphisms is exact, then the sequence of induced homomorphisms of Abelian groups

\[
0 \to \text{Hom}_R(D, L) \xrightarrow{\phi'} \text{Hom}_R(D, M) \xrightarrow{\psi'} \text{Hom}_R(D, N)
\]

is also exact.

2. Let \( I = \langle 2, x \rangle \) be the ideal generated by 2 and \( x \) in the ring \( R = \mathbb{Z}[x] \), \( x \) being an indeterminate. The ring \( R/I \cong \mathbb{Z}/2\mathbb{Z} \) inherits from \( R \) a natural \( R \)-module structure, with annihilator \( I \).

(a) Show that there is an \( R \)-module homomorphism from \( I \otimes_R I \) to \( \mathbb{Z}/2\mathbb{Z} \) mapping \( p(x) \otimes q(x) \) to \( \frac{p(0)}{2} q'(0) \), where \( q' \) denotes the usual polynomial derivative of \( q \).

(b) Show that \( 2 \otimes x \neq x \otimes 2 \) in \( I \otimes_R I \).

Part IV  

In this part, \( x \) denotes an indeterminate.

1. This question concerns the polynomial \( f(x) := x^{p^n} - x + 1 \in \mathbb{F}_p[x] \) \( (n \geq 1) \). We take some fixed algebraic closure \( \mathbb{A} \) of \( \mathbb{F}_p \), and denote by \( \mathbb{F}_{p^n} \) the unique field of order \( p^n \) contained in \( \mathbb{A} \).

You may assume that each extension of finite degree of \( \mathbb{F}_p \) is Galois over \( \mathbb{F}_p \), with cyclic Galois group generated by the Frobenius automorphism \( \phi : a \mapsto a^p \).

(a) Let \( E \) be the splitting field over \( \mathbb{F}_p \) of \( f(x) = x^{p^n} - x + 1 \) in \( \mathbb{A} \). Show that \( E \) contains \( \mathbb{F}_{p^n} \) as a subfield. (Hint: If \( \alpha \) is a root of \( f(x) \), then so is \( \alpha + a \) for each \( a \in \mathbb{F}_{p^n} \).)

(b) Determine the order of the Frobenius automorphism \( \phi : E \to E \), \( \phi : \beta \mapsto \beta^p \). (Hint: First compute \( \phi^n(\alpha) \), where \( \alpha \) is a root of \( f(x) \).)

(c) Show that if \( f(x) \) is irreducible over \( \mathbb{F}_p \), then \( pn = p^n \).

[Observation (you may omit the easy proof): from \( pn = p^n \) it follows that \( n = 1 \) or \( n = p = 2 \).]

2. Determine the Galois group over \( \mathbb{Q} \) of \( x^4 + 9 \), describing how each automorphism permutes the roots of this polynomial.
Part I

1. Let $p$ be a prime, and let $S_p$ denote the symmetric group of degree $p$. Prove that if $P$ is a subgroup of $S_p$ of order $p$, then the normalizer of $P$ in $S_p$ has order $p(p-1)$.

2. Classify, up to isomorphism, the groups of order $63$.

Part II

1. A local ring is a commutative ring with $1 \neq 0$ that has a unique maximal ideal. Prove that if $R$ is a local ring with maximal ideal $M$, then every element of $R \setminus M$ is a unit. Also prove that if $R$ is a commutative ring with $1 \neq 0$, in which the set of nonunits forms an ideal $M$, then $R$ is a local ring with maximal ideal $M$.

2. Let $p \in \mathbb{Z}_+$ be prime, and let $\mathbb{Z}[i]$ denote the usual ring of Gaussian integers $\{a+bi \mid a, b \in \mathbb{Z}\}$. For which $p$ is the quotient ring $\mathbb{Z}[i]/(p)$ (i) a field, (ii) a product of fields? Justify your answer. (You may use the following facts: (i) $\mathbb{Z}[i]$ is a Euclidean Domain with respect to the field norm, hence is also a Unique Factorization Domain, and (ii) a prime $p \in \mathbb{Z}_+$ with $p \equiv 1 \pmod{4}$ can be written as the sum of two integer squares.)

Hint: Use the Chinese Remainder Theorem where appropriate. Also note that a product of fields cannot contain a nonzero nilpotent element.

Part III

1. Let $V$ be a finite dimensional vector space over a field $F$, and let $v_1, v_2$ be nonzero elements of $V$. Prove that $v_1 \otimes v_2 = v_2 \otimes v_1$ in $V \otimes_F V$ if and only if $v_1 = \lambda v_2$ for some $\lambda \in F$.

2. Let $R$ be a ring with $1 \neq 0$, let $P, M, N$ be $R$–modules, and let there be an exact sequence of $R$–module homomorphisms $M \xrightarrow{\phi} N \rightarrow 0$.

(a) Prove that if $P$ is a direct summand of a free $R$–module, then the induced sequence of Abelian group homomorphisms

$$\text{Hom}_R(P, M) \xrightarrow{\phi'} \text{Hom}_R(P, N) \rightarrow 0$$

is exact. (Here $\phi'$ is the homomorphism $\psi \mapsto \phi \circ \psi$.)

(b) Show by means of an example that in general the induced sequence $\text{Hom}_R(P, M) \xrightarrow{\phi'} \text{Hom}_R(P, N) \rightarrow 0$ need not be exact.

Note: For this question do not assume any result concerning projective modules.
Part IV  

In this part, \( x \) denotes an indeterminate.

1. This question concerns the splitting field over \( \mathbb{Q} \) of the polynomial \( x^4 - 2x^2 - 2 \in \mathbb{Q}[x] \).
   
   (a) Prove that \( x^4 - 2x^2 - 2 \) is irreducible over \( \mathbb{Q} \), and that its roots in \( \mathbb{C} \) are \( \pm \alpha, \pm \beta \), where \( \alpha = \sqrt{1 + \sqrt{3}}, \beta = \sqrt{1 - \sqrt{3}} \).
   
   (b) Prove that \( \mathbb{Q}(\alpha) \neq \mathbb{Q}(\beta) \), and that \( [\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)] = 2 \).
   
   (c) Prove that the splitting field of \( x^4 - 2x^2 - 2 \) has degree 8 over \( \mathbb{Q} \), and that the Galois group of this polynomial over \( \mathbb{Q} \) is dihedral of order 8.

   Hint for (c): The Galois group acts faithfully on the set of roots of the polynomial.

2. Let \( \mathbb{F}_p \) denote the field of order \( p \), let \( f \in \mathbb{F}_p[x] \) be irreducible over \( \mathbb{F}_p \), and let \( K \) be a splitting field for \( f \) over \( \mathbb{F}_p \).

   Let \( L \) be an intermediate field, i.e. \( \mathbb{F}_p \subseteq L \subseteq K \). Prove that the irreducible factors of the polynomial \( f \) in \( L[x] \) all have the same degree.

   Hint: Here is one approach. Let \( g \in L[x] \) be a factor of \( f \) that is irreducible in \( L[x] \), and let \( \alpha \) be a root of \( g \) in \( K \). Consider the relationship between \( [L(\alpha) : L] \) and \( [K : L] \).
Algebra Preliminary Examination

August 2020

Attempt all questions, and justify each answer.

Part I

1. Let $P$ be a Sylow $p$–subgroup of a finite group $G$. If $p$ is the smallest prime dividing $|G|$ and $P$ is cyclic, prove that $N_G(P) = C_G(P)$. (Recall that $N_G(P), C_G(P)$ denote the normalizer and centralizer of $P$ in $G$, respectively.)

   \textit{(Hint: Consider the order of the automorphism group of $P$ and the action of $N_G(P)$ on $P$ by conjugation.)}

2. (a) Prove that a group of order 105 contains a cyclic normal subgroup of order 35.

   (b) Prove that, up to isomorphism, there is just one non-Abelian group of order 105.

\textit{In parts II, III and IV, $X$ denotes an indeterminate.}

Part II

1. Let $R$ be a commutative ring with $1 \neq 0$. Recall that $R$ is Artinian if it satisfies the descending chain condition on ideals, i.e. if $I_1 \supseteq I_2 \supseteq \ldots$ is a descending chain of ideals of $R$, then there exists $k \in \mathbb{Z}_+$ such that $I_m = I_k$ for all $m > k$.

   Let $S$ be an arbitrary commutative ring with $1 \neq 0$, and let $J$ denote the Jacobson radical of $S[X]$. Prove that $S[X]/J$ is not Artinian.

2. Let $R$ be the subring of $\mathbb{Q}[X]$ consisting of all polynomials whose constant term is an integer.

   (a) Prove that $R$ is an integral domain in which every irreducible element is prime.

   (b) Prove that $R$ is not a Unique Factorization Domain.

      \textit{(Hint: Consider factorizations of the element $X$.)}

Part III

1. Let $k$ be a field, and let $R = M_2(k)$ be the ring of $2 \times 2$ matrices over $k$. Let $P$ be the set of $2 \times 1$ matrices over $k$: then $P$ is an Abelian group under matrix addition, and left matrix multiplication of elements of $P$ by elements of $R$ accords $P$ the structure of a left $R$–module.

   Prove that the $R$–module $P$ is projective, but not free.

2. Let $R = \mathbb{Z}[X]$, let $I \subset R$ be the ideal generated by 2, $X$, and let $M = I \otimes_R I$.

   Prove that the element $2 \otimes 2 + X \otimes X \in M$ cannot be written as a simple tensor $a \otimes b$ ($a, b \in I$).

   \textit{(Hint: Use a suitable $R$–module homomorphism defined on $M$.)}
Part IV

1. Prove that \( \mathbb{Q}(\sqrt{5} + 2\sqrt{5}) \) is a Galois extension of \( \mathbb{Q} \), and determine its Galois group.

2. Let \( F \) be a field (possibly infinite) of finite characteristic \( p \), and let \( a \in F \) be an element not of form \( b^p - b \) for any \( b \in F \). Let \( f = X^p - X - a \in F[X] \).

   (a) Prove that the polynomial \( f \) is separable and irreducible over \( F \).

   (b) Prove that if \( \alpha \) is a root of \( f \) in an extension field of \( F \), then \( F(\alpha) \) is a splitting field for \( f \) over \( F \).

   (Hint: Consider the effect of substituting \( X + 1 \) for \( X \) in the polynomial \( f \).)
ALGEBRA PRELIMINARY EXAM

JANUARY 2020

Instructions: Attempt all problems in all four parts. Justify each answer.

General Assumptions: Unless explicitly stated otherwise, all rings have $1 \neq 0$ [and their subrings contain 1] and all modules are unitary.

Part I

1. Let $G$ be a finite group and $\phi : G \to H$ a surjective homomorphism. Prove that if $y \in H$ is such that $|y| = p^r$, for some prime $p$ and $r \in \mathbb{Z}_{>0}$, then there is $x \in G$ such that $\phi(x) = y$ and $|x| = p^s$, for some $s \in \mathbb{Z}_{>0}$.

[Hint: Let $g \in G$ such that $\phi(g) = y$, and write $|g| = n \cdot p^k$, where $p \nmid n$.]

2. Let $G$ be a group of order 60 and assume that 4 divides $|Z(G)|$ [where $Z(G)$ denotes the center of $G$]. Prove that $G$ must be Abelian.

Part II

1. Let $I$ be the ideal of $\mathbb{Z}[x]$ generated by 7 and $x^2 + 1$. Prove that $I$ is a maximal ideal.

2. Let $R$ be an integral domain such that for any descending chain of ideals

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$

there is a positive integer $N$ such that $I_i = I_N$ for all $i \geq N$. Prove that $R$ is a field.

Part III

1. Let $R$ be a subring of $S$. Prove that $S \otimes_R S \neq 0$.

2. Let $R$ be a ring containing $\mathbb{Z}$ such that $R$ is a free $\mathbb{Z}$-module of finite rank $n > 0$ and every non-zero ideal of $R$ has a non-zero element of $\mathbb{Z}$. Prove that for every non-zero ideal $I$ we have that $R/I$ is finite.

Part IV

1. Given a prime $p$ and a positive integer $n$, show that there is an Abelian extension [i.e., Galois with Abelian Galois group] $K$ of $\mathbb{Q}$ with $[K : \mathbb{Q}] = p^n$.

2. Let $F$ be a field of characteristic $p$ with exactly $p^n$ elements. If $K$ is a finite extension of $F$ with $K = F[\alpha]$, for some $\alpha \in K$, and $f$ is the minimal polynomial of $\alpha$ over $F$, then show that if $\beta$ is another root of $f$, then $\beta \in K$ and $\beta = \alpha^p k$ for some $k \in \mathbb{Z}$.
ALGEBRA PRELIMINARY EXAM

AUGUST 2019

Instructions: Attempt all problems in all four parts. Justify each answer.

General Assumptions: Unless explicitly stated otherwise, all rings have $1 \neq 0$ [and their subrings contain 1] and all modules are unitary.

Part I

1. Let $G_1$, $G_2$ be groups, $N \leq G_1$, and $\phi : G_1 \to G_2$ be an onto homomorphism such that $N \cap \ker(\phi) = \{1\}$. Prove that for $x \in N$ we have that $C_{G_2}(\phi(x)) = \phi(C_{G_1}(x))$. [Remember: $C_G(x) \overset{\text{def}}{=} \{g \in G : gx = xg\}$ is the centralizer of $x$ in $G$.]

2. Let $G$ be a group of order $992 = 2^5 \cdot 31$. Prove that either $G$ has a normal subgroup of order $32 = 2^5$ or it has a normal subgroup of order $62$.

Part II

1. Let $R$ be a UFD with exactly two non-associate prime elements $p$ and $q$ [i.e., $p$ and $q$ are non-associate primes and every prime is an associate of either $p$ or $q$]. Prove that $R$ is a PID.

2. Let $R$ be a PID and $P$ a prime ideal of $R[x]$ such that $P \cap R \neq \{0\}$. Prove that there is $p \in R$ prime [in $R$] such that either $P = (p)$ or $P = (p, f)$ for some $f$ prime in $R[x]$.

Part III

1. Let $R$ be a commutative ring and $M$ an $R$-module. Prove that $R \otimes_R \text{Hom}_R(R \oplus R, M)$ is projective if and only if $M$ is projective.

2. Let $R$ be a commutative ring, $M$ and $N$ be $R$-modules and $M'$ and $N'$ be submodules of $M$ and $N$ respectively. Define $L$ as the submodule of $M \otimes_R N$ generated by the set

\[ \{x \otimes y \in M \otimes_R N : x \in M' \text{ or } y \in N'\}. \]

Show that $M/M' \otimes_R N/N' \cong (M \otimes_R N)/L$.

Part IV

1. Let $F = \mathbb{Q}(\sqrt[3]{2} \cdot \zeta)$, where $\zeta = -\frac{1}{2} + \sqrt{3}/2$ [a primitive third root of unity]. Prove that $-1$ is not a sum of squares in $F$, i.e., there is no positive integer $n$ and $\alpha_1, \ldots, \alpha_n \in F$ such that $-1 = \alpha_1^2 + \cdots + \alpha_n^2$.

2. Let $F$ be a field of characteristic 0 and $K/F$ be a field extension of degree $n$ such that there is a root of unity $\zeta$ in the algebraic closure of $K$ such that $K \subseteq F[\zeta]$. Prove that if $d \mid n$, there is $\alpha \in K$ such that the minimal polynomial of $\alpha$ over $F$ has degree $d$. 
ALGEBRA PRELIMINARY EXAM

AUGUST 2018

Instructions: Attempt all problems in all four parts. Justify your answers.

General assumptions: All rings have 1 ≠ 0, their subrings contain 1, and all modules are unitary.

Part I

1. Let $G$ be a (possibly infinite) group, and suppose that $G$ contains a subgroup $H ≠ G$ whose index $[G : H]$ is finite. Prove that $G$ contains a normal subgroup $N ≠ G$ of finite index.
2. Prove that every group of order 70 contains a cyclic, normal subgroup of order 35.

Part II

1. Let $R$ be a commutative ring in which every element is either a unit or nilpotent. Prove that $R$ has exactly one prime ideal.
2. If $R$ is an integral domain, prove that there are infinitely many ideals in $R[ω]$ that are both prime and principal.

Part III

1. Let $R$ be a ring, possibly non-commutative, and suppose that

   \[ 0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0 \]

   is a short exact sequence of left $R$-modules, with $M'$ and $M''$ finitely generated. Prove that $M$ is finitely generated.
2. Let $M$ be a finitely-generated $\mathbb{Z}$-module, and let $T \subset M$ be its torsion submodule. Show that the torsion submodule of $M \otimes_{\mathbb{Z}} M$ has at least $|T|$ elements.

Part IV

1. Let $p$ be a prime and suppose that $f \in \mathbb{F}_p[x]$ is an irreducible polynomial. Let $K$ be a degree 2 extension of $\mathbb{F}_p$ and suppose that there exist non-constant polynomials $g, h \in K[x]$ such that $f = gh$. If $g$ is an irreducible polynomial of degree 5, what is the degree of $f$?
2. Suppose that $f \in \mathbb{Q}[x]$ is an irreducible degree 4 polynomial, and $K/\mathbb{Q}$ is an extension such that $f$ has exactly one root in $K$. Let $G$ be the Galois group of $f$, and show that $|G|$ is divisible by 12.
ALGEBRA PRELIMINARY EXAM

AUGUST 2017

Instructions: Attempt all problems in all four parts. Justify your answer.

General Assumptions: Unless explicitly stated otherwise, all rings have $1 \neq 0$ [and their subrings contain 1] and all modules are unitary.

Part I

1. Suppose that $H$ is a subgroup of a finite group $G$ of index $p$, where $p$ is the smallest prime dividing the order of $G$. Prove that $H$ is normal in $G$.
2. Show that every group of order 222 is solvable.

Fun fact: The University of Tennessee was established 222 years ago.

Part II

1. Let $I$ and $J$ be ideals of a ring $R$ and assume that $P$ is a prime ideal of $R$ that contains $I \cap J$. Prove that either $I$ or $J$ is contained in $P$.
2. Let $R$ be an integral domain and suppose that every prime ideal in $R$ is principal. Prove that $R$ is a PID.

Part III

1. Let $V$ be a Noetherian right $R$-module, and $\theta : V \rightarrow V$ a homomorphism.
   (a) Show that $\ker(\theta^{n+1}) = \ker(\theta^n)$ for some $n \geq 1$.
   (b) If $\theta$ is onto, show that it is one-to-one.
2. An $R$-projection is defined to be an $R$-module homomorphism $\varphi : R^n \rightarrow R^n$ such that $\varphi^2 = \varphi$. Prove that a finitely generated $R$-module $M$ is projective if and only if it is isomorphic to the image of some $R$-projection.

Part IV

1. Let $F \subseteq E$ be fields and suppose $0 \neq \alpha \in E$ with $E = F(\alpha)$. Assume that some power of $\alpha$ lies in $F$ and let $n$ be the smallest positive integer such that $\alpha^n \in F$.
   (a) If $\alpha^m \in F$ with $m > 0$, show that $m$ is a multiple of $n$.
   (b) If $E$ is a separable extension of $F$, prove that the characteristic of $F$ does not divide $n$.
   (c) If every root of unity of $E$ lies in $F$, show that $[E : F] = n$.
2. Let $F$ be a field of characteristic 0 and let $E$ be a finite Galois extension of $F$.
   (a) If $0 \neq \alpha \in E$ with $E = F(\alpha)$, show that $F(\alpha^2) \neq E$ if and only if there exists $\sigma \in \text{Gal}(E/F)$ with $\sigma(\alpha) = -\alpha$.
   (b) Prove that there exists an element $\alpha \in E$ with $E = F(\alpha^2)$. 


• Attempt all four parts. Justify your answers.

Part I.

1. Show that a group of order 255 is not a simple group.

2. A group $G$ has a cyclic normal subgroup of order 2016. If $G$ also has a subgroup of order 2017, then show that $G$ has a cyclic subgroup of order $(2016) \times (2017)$.

Part II.

Note: Rings are assumed to be commutative and with $1 \neq 0$.

1. Let $A$ and $B$ be rings. Show that each ideal of $A \times B$ is of the form $I \times J$, where $I$ is an ideal of $A$ and $J$ is an ideal of $B$.

2. Let $R$ be a ring, let $X$ be an indeterminate and let $S := \{X^n \mid 0 \leq n \in \mathbb{Z}\}$. If $S^{-1}R[[X]]$ is a field, then show that $R$ is a field.

Part III.

Note: Rings are assumed to be commutative with $1 \neq 0$ and modules are assumed to be unitary.

1. Let $A$ be a ring and let $M$, $N$ be finitely generated projective (left) $A$-modules. Show that $\text{Hom}_A(M, N)$ is a finitely generated projective $A$-module.

2. Let $R$ be a PID and let $I$, $J$ be ideals of $R$. If $I \neq R \neq J$, then show that $(R/I) \oplus (R/J)$ and $(R/I) \otimes_R (R/J)$ are not isomorphic as (left) $R$-modules.

Part IV.

Note: In what follows, $X$ is an indeterminate.

1. Let $K$ be an extension-field of $\mathbb{Q}$ such that $K/\mathbb{Q}$ is Galois with Galois group $Z_{30}$. Suppose each of $f, g \in \mathbb{Q}[X]$ is an irreducible polynomial of degree 6 and $f$ has a root $a \in K$. If $g$ has a root in $K$, then show that $g$ has all its roots in $\mathbb{Q}[a]$.

2. Let $F \subset K$ be finite fields of characteristic 5 and suppose $g \in F[x]$ is irreducible in $F[x]$. If $g$ has degree 11, then show that either $g$ is irreducible in $K[x]$ or all its roots are in $K$. 
• Attempt all four parts. Justify your answers.

Part I.

1. Let $p$ be a prime number and $G$ be a non-Abelian group of order $p^3$. Show that $G$ has at least 3 (distinct) subgroups of index $p$.

2. Let $G$ be a group of order $p^3q$, where $p, q$ are distinct prime numbers. If no Sylow $p$-subgroup of $G$ is normal and also no Sylow $q$-subgroup of $G$ is normal, then show that $G$ has order 24.

Part II.

Note: Rings are tacitly assumed to be commutative and with $1 \neq 0$.

1. Let $R$ be a ring, $X$ an indeterminate and $h : R[X] \to R[[X]]$ a ring-homomorphism such that $h(a) = a$ for all $a \in R$. Show that $h$ is not surjective.

2. Let $R$ be an integral domain with at least 3 (distinct) maximal ideals. Given maximal ideals $M$ and $N$ of $R$, show that $R_M \cap R_N \neq R$. (Here localization of $R$ at a prime ideal is naturally identified as a ring in between $R$ and the quotient-field of $R$.)

Part III.

Note: Rings are assumed to be commutative and with $1 \neq 0$ and modules are assumed to be unitary.

1. Let $R$ be a ring and let $a \in R$ be a nonzero element of $R$ such that $a^3 = a$. Show that the ideal $Ra$ is a projective $R$-module.

2. Let $R$ be a PID and let $M$ be a finitely generated $R$-module. For a maximal ideal $Q$ of $R$, let $\delta(Q, M)$ denote the dimension of $M \otimes_R R/Q$ as a vector-space over the field $R/Q$. Let $\delta(M)$ denote the sup{$\delta(Q, M)$}, where the supremum is taken over all maximal ideals $Q$ of $R$. Show that as an $R$-module, $M$ has a generating set of cardinality $\delta(M)$ and any generating set of $M$ has cardinality at least $\delta(M)$.

Part IV.

Note: In what follows, $X$ is an indeterminate.

1. Let $f(X)$ be a monic polynomial with rational coefficients. Assume $f(X)$ is irreducible in $\mathbb{Q}[X]$ and the Galois-group of $f(X)$ over $\mathbb{Q}$ is a group of order 99. What is the degree of $f(X)$?

2. Compute the Galois group of $X^6 - 9$ over $\mathbb{Q}$. 
Instructions: Attempt all problems in all four parts. Justify each answer.

General Assumptions: Unless explicitly stated otherwise, all rings have $1 \neq 0$ [and their subrings contain 1] and all modules are unitary.

Part I

1. Let $G$ be a finite group and $H$ be a subgroup of $G$. Prove that $n_p(H) \leq n_p(G)$, where $n_p(X)$ denotes the number of Sylow $p$-subgroups of $X$.

2. Let $G$ be a group of order $p^n$ for some prime $p$ and positive integer $n$. Prove that if $1 \neq H \leq G$, then $Z(G) \cap H \neq 1$. [Here $Z(G)$ denotes the center of $G$.]

Part II

1. Let $R$ be a Boolean ring, i.e., a ring [with 1] for which $a^2 = a$ for all $a \in R$. [You can use without proof the well known fact that if $R$ is Boolean, then it is commutative of characteristic 2.]
   (a) Prove that if $R$ is finite, then its order is a power of 2.
   (b) Prove that every prime ideal of $R$ is maximal.

2. Show that $R \overset{\text{def}}{=} \mathbb{Z}[x_1, x_2, x_3, \ldots]/(x_1x_2, x_3x_4, x_5x_6, \ldots)$ has infinitely many distinct minimal prime ideals. [$P$ is a minimal prime ideal if it is prime and whenever $Q \subseteq P$, with $Q$ also prime, we have $Q = P$.]

Part III

1. Let $F$ be a field and $M$ be a torsion $F[x]$-modulo. Prove that if there is $m_0 \in M$, with $m_0 \neq 0$, and an irreducible $f \in F[x]$ such that $f \cdot m_0 = 0$, then $\text{Ann}(M) \subseteq (f)$.

2. Let $R$ be an integral domain and $I$ a principal ideal of $R$. Prove that $I \otimes_R I$ has no non-zero torsion element [i.e., if $m \in I \otimes_R I$, with $m \neq 0$, and $r \in R$ with $rm = 0$, then $r = 0$].

Part IV

1. Let $K/F$ be an algebraic field extension and $\text{Emb}(K/F)$ denote the set of field homomorphisms $\sigma : K \to \bar{K}$ such that $\sigma(a) = a$ for all $a \in F$. [Here $\bar{K}$ is a fixed algebraic closure of $K$.]
   (a) Prove that if $\alpha$ is a root of a [not necessarily irreducible] non-zero polynomial $f \in F[x]$ with $\text{deg}(f) = n$, then $\text{Emb}(F[\alpha]/F)$ has at most $n$ elements.
   (b) Give an example of an algebraic extension $K/F$ of degree greater than one for which $\text{Emb}(K/F)$ has a single element.

2. Let $F = \mathbb{Q}[\sqrt{2}]$ and $K = \mathbb{Q}[\sqrt{2}, i]$.
   (a) Prove that $K/F$ is Galois with $[K : F] = 8$.
   (b) Prove that $\text{Gal}(K/F)$ has a non-normal subgroup. [This implies that it is the dihedral group of order 8, as it is the only group of order 8 with this property.]
ALGEBRA PRELIMINARY EXAM

AUGUST 2015

Instructions: Attempt all problems in all four parts. Justify each answer.

General Assumptions: Unless explicitly stated otherwise, all rings have 1 ≠ 0 [and their subrings contain 1] and all modules are unitary.

Part I

1. Let $G$ be a non-Abelian group of order $p^3$, $[G, G] = \langle x y x^{-1} y^{-1} : x, y \in G \rangle$ be its commutator subgroup and $Z(G)$ be its center. Show that $|Z(G)| = p$ and that $Z(G) = [G, G]$.

2. Let $G_1$ and $G_2$ be groups of order 81 acting faithfully [i.e., only 1 acts as the identity function] on sets $X_1$ and $X_2$, respectively, with 9 elements each. Show that there is an isomorphism $\psi : G_1 \to G_2$.

Part II

1. Let $D$ be a finite division ring. Prove that $D$ has a prime power number of elements. [Hint: Consider the center $Z(D) = \{ a \in D : ax = xa \text{ for all } x \in D \}$.]

2. Let $p \in \mathbb{Z}$ prime and

$$f = a_{2n+1} x^{2n+1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x].$$

Prove that if $p^3 \mid a_0$, $p^2 \mid a_0, a_1, \ldots, a_n$, $p \mid a_{n+1}, a_{n+2}, \ldots, a_{2n}$ and $p \nmid a_{2n+1}$, then $f$ is irreducible in $\mathbb{Q}[x]$.

Part III

1. Let $R$ be a commutative ring. An $R$-module is Artinian if it satisfies the descending chain condition for submodules. [I.e., if $S_1 \supseteq S_2 \supseteq S_3 \supseteq \cdots$ is a chain of submodules, then there is a $i_0$ such that for all $i \geq i_0$, we have $S_i = S_{i_0}$.] Show that if $L$ and $N$ are Artinian $R$-modules and we have a short exact sequence

$$0 \longrightarrow L \xrightarrow{\psi} M \xrightarrow{\phi} N \longrightarrow 0,$$

then $M$ is also Artinian.

2. Let $R$ be a commutative ring such that every $R$-module is free. Prove that $R$ is a field.

Part IV

1. Let $\mathbb{F}_p$ be the field with $p$ elements, and $t$ be an indeterminate. Let $f(t), g(t) \in \mathbb{F}_p[t] \setminus \{0\}$, with $\max\{\deg f, \deg g\} < p$ and $f(t)/g(t) \not\in \mathbb{F}_p$. Show that the extension $\mathbb{F}_p(t)/\mathbb{F}_p(f(t)/g(t))$ is separable.

2. Suppose that $f = \prod_{i=1}^N (x - \alpha_i) \in \mathbb{Q}[x]$ [with $\alpha_i \in \mathbb{C}$] is irreducible in $\mathbb{Q}[x]$ and let $f_n \overset{\text{def}}{=} \prod_{i=1}^N (x - \alpha_i^n)$. Prove that for each $n$, there is $g_n \in \mathbb{Q}[x]$ irreducible and a positive integer $k_n$ such that $f_n = g_n^{k_n}$. 

ALGEBRA PRELIMINARY EXAMINATION
Fall 2014

Attempt all four parts. Justify your answers.

Part I.

1. Show that $S_4$ (the group of permutations of $\{1, 2, 3, 4\}$) does not have a subgroup isomorphic to $Q_8$ (the quaternion-group of order 8).

2. Let $G$ be a group of order 2014. Show that $G$ is cyclic if and only if $G$ has a normal subgroup of order 2.

Part II.

Note: Rings are assumed to be commutative and with $1 \neq 0$, subrings are assumed to contain 1 and ring-homomorphisms are assumed to map 1 to 1.

1. Let $R$ be an integral domain with only finitely many units. Show that the intersection of all maximal ideals of $R$ is 0.

2. Let $R$ be a ring such that each non-unit of $R$ is nilpotent. Let $X$ be an indeterminate and let $f \in R[[X]]$. Show that $f^n = f$ for some integer $n \geq 2$ if and only if either $f = 0$ or $f^{n-1} = 1$.

Part III.

Note: Rings are assumed to be commutative and with $1 \neq 0$ and modules are assumed to be unitary.

1. Let $L$ be a module over a ring $R$ and let $M, N$ be $R$-submodules of $L$. Show that if $(M + N)/(M \cap N)$ is a projective $R$-module then $M/(M \cap N)$ is also a projective $R$-module.

2. Let $R$ be a PID with infinitely many prime ideals and let $M$ be a finitely generated $R$-module. Show that $M$ is a torsion $R$-module if and only if $M \otimes_R R/P = 0$ for all but finitely many prime ideals $P$ of $R$.

Part IV.

Note: In what follows, $X$ is an indeterminate.

1. Let $f(X) := X^5 + 3X^3 + X^2 + 3 \in \mathbb{Q}[X]$. Let $K$ be the splitting field of $f(X)$ over $\mathbb{Q}$. Compute $[K : \mathbb{Q}]$.

2. Let $f(X) := X^3 + X + 1 \in \mathbb{Q}[X]$. Let $F$ be a finite Galois extension of $\mathbb{Q}$ such that the Galois group of $F$ over $\mathbb{Q}$ is an Abelian group. Show that $f$ is irreducible in $F[X]$.
Algebra Preliminary Exam     January 2014

Attempt all problems and justify all your answers. All rings have a 1 ≠ 0, all ring homomorphisms send 1 to 1, and all R-modules are unitary.

Part I. Groups

1. Show that every group of order 1,225 is abelian.
2. Let n ≥ 2. Show that there is a nontrivial homomorphism
   \[ f : S_n \rightarrow \mathbb{Z}/n\mathbb{Z} \] (i.e., kerf ≠ S_n) if and only if n is even.

Part II. Rings

1. Let R be a commutative ring. Show that J(R[X]) = nil(R[X]).
   (J(A) and nil(A) are the Jacobson and nil radicals of A.)
2. Let R be a PID.
   (a) Show that R satisfies ACC on ideals.
   (b) Show that every nonzero prime ideal of R is maximal.

Part III. Modules

1. Let R be a ring and M a nonzero R-module. Show that
   \[ M = A \oplus B \] for proper submodules A and B of M if and only if
   there is a nonzero, nonidentity homomorphism \( f : M \rightarrow M \)
   with \( f^2 = f \).
2. Let R be a commutative ring, I a proper ideal of R, and M
   an R-module. Show that \( (R/I) \oplus_R M \) and M/IM are isomorphic as
   R-modules.

Part IV. Fields

1. Let K a subfield of a field F. Show that there is a
   subring of F containing K that is a PID, but not a field, if and only if the extension F/K is not algebraic.
2. Determine the Galois group of \( f(X) = X^{10} + X^8 + X^6 + X^2 \)
   over \( \mathbb{Z}/2\mathbb{Z} \).
Algebra Preliminary Exam

August 2013

Attempt all problems and justify all your answers. All rings have an identity 1 \neq 0, all ring homomorphisms send 1 to 1, and all R-modules are unitary.

Part I.

1. (a) Let p and q be (not necessarily distinct) prime numbers. Show that a group G with |G| = pq is either abelian or Z(G) = \{e\}.
   (b) Give an example of a nonabelian group G whose order is the product of three (not necessarily distinct) primes and Z(G) \neq \{e\}.

2. (a) Let G be a group with |G| = 100. Show that G is abelian if and only if its Sylow 2-subgroup is normal.
   (b) Give an example of a nonabelian group of order 100.

Part II.

1. Let R and S be a commutative rings with 1 \neq 0. Show that every ideal of R \times S has the form I \times J for I an ideal of R and J an ideal of S.

2. Let R be a commutative ring with 1 \neq 0. Show that \( f(X) = a_0 + a_1X + \cdots + a_nX^n \) is a unit in R[X] if and only if \( a_0 \) is a unit in R and \( a_1, \ldots, a_n \) are nilpotent.
Part III

1. Let $P$ and $Q$ be finitely generated projective $R$-modules over a commutative ring $R$ with $1 \neq 0$. Show that $\operatorname{Hom}_R(P,Q)$ is a finitely generated projective $R$-module.

2. Let $R$ be a commutative ring with $1 \neq 0$, $S$ a nonempty multiplicatively closed subset of $R$, and $M$ an $R$-module. Show that $(S^{-1}R) \otimes_R M$ and $S^{-1}M$ are isomorphic as $S^{-1}R$-modules.

Part IV.

1. Let $p$ and $q$ be distinct prime numbers, $F$ a subfield of a field $K$, and $f(X), g(X) \in F[X]$ be irreducible with $\deg(f(X)) = p$ and $\deg(g(X)) = q$. Let $a, b \in K$ be roots of $f(x)$ and $g(X)$, respectively. Show that $[F(a,b):F] = pq$.

2. (a) Let $F$ be a splitting field for $f(X) \in \mathbb{Q}[X]$ over $\mathbb{Q}$ with abelian Galois group $G$. Show that every subfield $L$ of $F$ is a splitting field over $\mathbb{Q}$ for some polynomial $g(X) \in \mathbb{Q}[X]$.

(b) Give an example to show that if $G$ is not abelian in part (a), then some $L$ need not be a splitting field.
Instructions: Attempt all problems in all four parts. Justify each answer.

General Assumptions: Unless explicitly stated otherwise, all rings have $1 \neq 0$ [and their subrings contain 1] and all modules are unitary.

Part I

1. Let $p$ and $q$ be prime numbers such that $q < p$ and $q$ does not divide $p^2 - 1$. Prove that every group of order $p^2 q$ is Abelian.

2. Let $G$ be a finite simple group. Show that if $p$ is the largest prime dividing $|G|$, then there is no subgroup $H \leq G$ such that $1 < |G : H| < p$.

Part II

1. Let $R$ be a ring not necessarily having 1 [or commutative], with at least two elements and such that for all non-zero $a \in R$ there is a unique $b \in R$ such that $aba = a$.
   (a) Show that $R$ has no [non-zero] zero divisors.
   (b) Show that for $a$ and $b$ as above, we also have $bab = b$.
   (c) Show that $R$ has 1.

2. Let $R$ be a commutative ring and $a \in R$ such that $a^n \neq 0$ for all positive integers $n$. Let $I$ be an ideal maximal with respect to the property that $a^n \notin I$ for any positive integer $n$. Show that $I$ is prime.

Part III

1. Let $V = \mathbb{R}^2$ and $\{e_1, e_2\}$ be a basis of $V$. Show that $e_1 \otimes e_2 + e_2 \otimes e_1 \in V \otimes \mathbb{R} V$ cannot be written as a single tensor.

2. Let $R$ be a PID.
   (a) Prove that a finitely generated $R$-module $M$ is free if and only if it is torsion free.
   (b) Prove that if a finitely generated $R$-module $M$ is projective, then it is free.

Part IV

1. Let $\mathbb{F}_p$ be the field with $p$ elements, $\overline{\mathbb{F}}_p$ be a fixed algebraic closure of $\mathbb{F}_p$ and let
   
   $L = \{\alpha \in \overline{\mathbb{F}}_p : p \nmid [\mathbb{F}_p(\alpha) : \mathbb{F}_p]\}$.
   
   Show that $L$ is a field.

2. Let $p$ be a prime, $F$ be a field of characteristic different from $p$ and $f = x^p - a \in F[x]$ [not necessarily irreducible]. Let $K$ be the splitting field of $x^p - 1$ over $F$ and assume that all roots of $f$ lie in $K$.
   (a) Show that if $f(\alpha) = 0$ with $\alpha \notin F$, then $F[\alpha] = K$.
   (b) Prove that $f$ has a root in $F$. 
ALGEBRA PRELIMINARY EXAM

AUGUST 2012

Instructions: Attempt all problems in all four parts. Justify each answer.

General Assumptions: All rings have $1 \neq 0$ [and their subrings contain 1] and all modules are unitary.

Part I

1. Let $G$ and $H$ be finite Abelian groups. Prove that if $G \times H \times H \cong G \times G \times H$, then $G \cong H$.

2. Let $p$ be a prime and $G$ be a group of order $p^n$. For $k \in \{1, 2, 3, \ldots, (n-1)\}$, let $s_k$ denote the number of subgroups and normal subgroups of $G$ of order $p^k$ respectively. Show that $s_k - n_k$ is divisible by $p$.

Part II

1. Let $R$ be a commutative ring for which every proper ideal is prime. Show that $R$ is a field.

2. Let $F$ be a field and consider the subring $R$ of $F[t]$ given by polynomials with the coefficient of $t$ equal to zero, i.e., $R = F + t^2 F[t]$.
   (a) Show that $R$ has an irreducible element which is not prime. [Hence, $R$ is not PID.]
   (b) Show that $R$ is Noetherian. [Hint: Consider a connection between $R$ and $F[x, y]$.]

Part III

1. Let $R$ be a commutative ring, $S$ be a subring of $R$, $A$ be an $R$-module and
   \[ \mathcal{H} \overset{\text{def}}{=} \text{Hom}_R(R \otimes_S (S \otimes S), A). \]
   Show that for every surjective homomorphism of $R$-modules $\phi : M \to N$ and $R$-module homomorphism $f : \mathcal{H} \to N$ there is an $R$-module homomorphism $F : \mathcal{H} \to M$ such that $\phi \circ F = f$ if and only if the same if true if we replace $\mathcal{H}$ by $A$.

2. Let $R$ be a commutative ring, $D$, $M$ and $N$ be $R$-modules, $\phi : M \to N$ be an $R$-module homomorphism and $1 \otimes \phi : D \otimes_R M \to D \otimes_R N$ be the homomorphism for which
   \[ (1 \otimes \phi)(d \otimes m) = d \otimes \phi(m). \]
   (a) Assume that $\phi$ is injective. Show that if $D$ is free and of finite rank, then $1 \otimes \phi$ is also injective. [The finite rank is not necessary, but we assume it here for simplicity.]
   (b) Show that the above statement is not true for an arbitrary $D$.

Part IV

1. Let $F$ be a field and $K/F$ be an algebraic extension. Show that if $R$ is a subring of $K$ with $F \subseteq R \subseteq K$, then $R$ is a field.

2. Let $F$ be a field, $K/F$ be a Galois extension and $f \in F[x]$ be monic, separable and irreducible. Show that if $f = f_1 \cdots f_k$ is the factorization of $f$ in $K[x]$, with $f_i$ irreducible and monic, then the $f_i$'s are distinct, of the same degree and $G \overset{\text{def}}{=} \text{Gal}(K/F)$ acts transitively on $\{f_1, \ldots, f_k\}$. [i.e., given $\sigma \in G$, the map $f_i \mapsto f_i^\sigma$ is a permutation of the $f_i$'s and given $i, j \in \{1, \ldots, k\}$, there is a $\tau \in G$ such that $f_i^\tau = f_j$.]
ALGEBRA PRELIMINARY EXAMINATION  
Spring 2012

Attempt all four parts. Justify your answers.

Part I.

1. Show that a group of order 455 is necessarily cyclic.

2. Let $G$ be a group of order 56. Show that $G$ is solvable.

Part II.

1. Let $f : \mathbb{Q} \to \mathbb{Z}$ be a function such that $f(ab) = f(a)f(b)$ for all $a, b \in \mathbb{Q}$. Show that the image of $f$ has at most three elements and there exist an infinite number of such functions whose image has three elements.

2. Let $R$ be a PID and let $J$ denote the intersection of all maximal ideals of $R$. If $a^2 - a$ is in $J$ for all $a \in R$, then show that $R$ has only finitely many maximal ideals.

Part III.

Note: Rings are assumed to be commutative and with $1 \neq 0$ and modules are assumed to be unitary.

1. Let $R$ be an integral domain and let $M, N$ be projective $R$-modules. Show that $M \otimes_R N$ is a projective $R$-module.

2. Suppose $R$ is a principal ideal domain that is not a field. Suppose $M$ is a finitely generated $R$-module such that for every maximal ideal $P$ of $R$, $M/P M$ is a cyclic $R/P$-module. Show that $M$ itself is cyclic.

Part IV.

1. Let $f(X)$ be a monic polynomial of degree 9 having rational coefficients. Assume that $f(X)$ is irreducible in $\mathbb{Q}[X]$. Let $K$ denote the splitting field of $f$ over $\mathbb{Q}$ and let $u \in K$ be a root of $f$. If $[K : \mathbb{Q}] = 27$, then show that $\mathbb{Q}[u]$ has a subfield $L$ with $[L : \mathbb{Q}] = 3$.

2. Let $F, K$ be fields such that $K$ is a finite Galois extension of $F$ with Galois group $G$. Suppose $a \in K$ is such that $\sigma(a) - a \in F$ for all $\sigma \in G$. If the characteristic of $F$ does not divide the order of $G$, then show that $a \in F$. Assuming $F$ to be the field of two elements, construct a quadratic field extension $K := F[a]$ of $F$ such that $\sigma(a) - a \in F$ for all $\sigma \in G$. 
Algebra Preliminary Exam

January 2011

Attempt all problems and justify all your answers. All rings have an identity 1 ≠ 0, all ring homomorphisms send 1 to 1, and all R-modules are unitary.

I. 1. Let G be a finite simple group. Show that if G has a subgroup H with \([G:H] = n \geq 2\), then \(|H|(n - 1)!\).

2. List, up to isomorphism, all groups of order 153. Justify your answer.

II. 1. Let R be a commutative ring and I an ideal of R. Let \(I^* = (I, X)\) be an ideal of the polynomial ring \(R[X]\). Determine, in terms of I, when \(I^*\) is a prime ideal of \(R[X]\) and when \(I^*\) is a maximal ideal of \(R[X]\). Justify your answers.

2. (a) Show that if a commutative ring \(R\) satisfies DCC on ideals (i.e., \(R\) is Artinian), then \(R\) has only a finite number of maximal ideals.
(b) Give an example to show that (a) may be false if DCC is replaced by ACC (i.e., if \(R\) is Noetherian).
III. 1. Let \( f: M \to M \) be an \( R \)-module homomorphism with \( f \cdot f = f \). Show that the following statements are equivalent.

(a) \( f \) is injective.

(b) \( f \) is surjective.

(c) \( f = 1_M \).

2. (a) Let \( G \) and \( H \) be finitely generated abelian groups such that \( \mathbb{Z}_n \otimes G \cong \mathbb{Z}_n \otimes H \) for every integer \( n \geq 2 \). Show that \( G \cong H \).

(b) Give an example to show that (a) may be false if \( G \) and \( H \) are not both finitely generated.

IV. 1. Let \( F \) be a subfield of a field \( L \). Show that \( L/F \) is an algebraic extension if and only if every subring \( R \) of \( L \) containing \( F \) is a field.

2. Compute the Galois group of \( f(X) = x^4 + x + 1 \in \mathbb{Z}_2[X] \).
ALGEBRA PRELIMINARY EXAMINATION
Fall 2011

Attempt all four parts. Justify your answers.

Part I.

1. How many Sylow 2-subgroups does $S_5$ (the group of permutations of $\{1, 2, 3, 4, 5\}$) have?

2. Let $G$ be a group of order 231. Show that $G$ is Abelian if and only if $G$ has an Abelian subgroup of order 21.

Part II.

Note: Rings are assumed to be commutative and with $1 \neq 0$, subrings are assumed to contain 1 and ring-homomorphisms are assumed to map 1 to 1.

1. Let $R$ be a UFD such that each maximal ideal of $R$ is a principal ideal. Prove that $R$ is a PID.

2. Let $\mathbb{R}[[X]]$ denote the power-series ring in a single indeterminate $X$ over the field of real numbers $\mathbb{R}$. If $T$ is a multiplicative subset of $\mathbb{R}[[X]]$ containing 1 but not containing 0, then show that either $T^{-1}\mathbb{R}[[X]] = \mathbb{R}[[X]]$ or $T^{-1}\mathbb{R}[[X]]$ is a field.

Part III.

Note: Rings are assumed to be commutative and with $1 \neq 0$ and modules are assumed to be unitary.

1. Let $R$ be an integral domain and $I$ an ideal of $R$. Show that there exists a surjective $R$-module homomorphism $f : I \to R$ if and only if $I$ is a nonzero principal ideal.

2. Let $K$ be a field, $X$ an indeterminate over $K$ and $M$ a finitely generated $K[X]$-module. Show that $M$ is a projective $K[X]$-module if and only if $M$ is $K[X]$-module isomorphic to $K[X] \otimes_K V$ for some finite dimensional $K$-vector space $V$.

Part IV.

1. Let $K$ be a field and $F$ a subfield of $K$. The group of units of $K$ is denoted by $K^\times$. Suppose $f \in F[X]$ is a monic irreducible polynomial and $a, b \in K^\times$ are such that $f(a) = 0 = f(b)$. Show that the subgroup of $K^\times$ generated by $a$, is isomorphic to the subgroup of $K^\times$ generated by $b$.

2. Let $f \in \mathbb{Q}[X]$ be a polynomial of degree 4 such that the Galois group of $f$ (over $\mathbb{Q}$) is a group of order 6. Show that $f$ has a root in $\mathbb{Q}$.
Algebra Preliminary Exam

August 2010

Attempt all problems and justify all answers. All rings have an identity \( 1 \neq 0 \), ring homomorphisms send 1 to 1, and all \( R \)-modules are unitary.

I. 1. Let \( f : G \to H \) be a surjective homomorphism of finite groups and \( y \in H \) with \( |y| = n \). Show that there is an \( x \in G \) with \( |x| = n \).

2. Let \( p \) and \( q \) be primes, \( p \geq q \), \( n \geq 1 \), and \( G \) a group with \( |G| = p^n q \). Show that \( G \) has a normal subgroup \( H \) of order \( p^n \). (Hint: do the \( p > q \) and \( p = q \) cases separately.)

II. 1. Let \( R \) be a commutative ring with distinct prime ideals \( P \) and \( Q \) with \( P \cap Q = \{0\} \). Show that \( R \) is isomorphic to a subring of the direct product of two fields.

2. Let \( p \) and \( q \) be positive primes. Show that the polynomial \( f(X) = X^3 + px^2 + q \in \mathbb{Z}[X] \) is irreducible in \( \mathbb{Q}[X] \).

III. 1. Let \( A \) and \( B \) be finite abelian groups with \( |A| = m \) and \( |B| = n \). Show that \( \text{Hom}_\mathbb{Z}(A,B) = 0 \) if and only if \( \gcd(m,n) = 1 \).

2. Let \( A \) be a submodule of a projective \( R \)-module \( B \). Show that \( A \) is projective if \( B/A \) is projective.
IV. 1. Let $K \subseteq F$ and $K \subseteq L$ be subfields of a field $M$ with $[F:K] = p$ and $[L:K] = q$ for distinct primes $p$ and $q$. Show that $F \cap L = K$, and that $F = K(\alpha)$ and $L = K(\beta)$ for any $\alpha \in F - K$ and $\beta \in L - K$.

2. Let $K$ be a field and $f(X) \in K[X]$ be irreducible and separable with $\deg(f(X)) = n$. Show that if the Galois group $G$ of $f(X)$ over $K$ is abelian, then $|G| = n$. 