
PRACTICE PUTNAM PROBLEMS

PAVLOS TZERMIAS

1. functional relations

Problem 1 (Mock Putnam Exam UTK 2001). Find all continuous functions f : R → R

such that |f(1)| < 1 and f(xf(y)) = yf(x), for all x, y ∈ R.

Problem 2 (Greek Math Olympiad 1985). Let f : R → R be a continuous function such
that f(f(f(f(x)))) = x, for all x ∈ R. Show that there exists a ∈ R such that f(a) = a.

Problem 3 (Putnam Competition 1990). Determine all continuously differentiable functions
f : R→ R such that

(f(x))2 =
∫ x

0
((f(t))2 + (f ′(t))2) dt + 1990,

for all x ∈ R.

Problem 4 (Putnam Competition 1991). Let f and g be non-constant differentiable functions
from R to R. Suppose that f ′(0) = 0 and

f(x+ y) = f(x)f(y)− g(x)g(y),

g(x+ y) = f(x)g(y) + g(x)f(y),

for all x, y ∈ R. Show that (f(x))2 + (g(x))2 = 1, for all x ∈ R.

Problem 5 (Putnam Competition 1988). Find all functions f : R+ → R
+ such that

f(f(x)) = 6x− f(x),

for all x ∈ R+.

Problem 6. Find all continuous functions f : R→ R such that

f(x) + 2f(2x) + 3f(3x) = 0,

for all x ∈ R.

Problem 7 (International Math Olympiad 1968). Let f : R → R be a function for which
there exists an a > 0 such that

f(x+ a) =
1
2

+
√
f(x)− (f(x))2,

for all x ∈ R. Show that f is periodic.
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Problem 8 (variant, International Math Olympiad 1994). Find all functions f : R+ → R
+

such that
f(f(y) + xf(y)− x) = f(x) + yf(x)− y,

for all x, y ∈ R+ and f(x)/x is strictly decreasing on R+.

Problem 9 (International Math Olympiad 1986). Find all functions f : R+ → R+ such
that f(2) = 0, f(x) 6= 0 if 0 ≤ x < 2 and

f(xf(y))f(y) = f(x+ y),

for all x, y ∈ R+.

Problem 10 (Balkan Math Olympiad 2000). Find all f : R→ R such that

f(xf(x) + f(y)) = (f(x))2 + y,

for all x, y ∈ R.

Problem 11 (Putnam Competition 2000). Let f(x) be a continuous function such that

f(2x2 − 1) = 2xf(x),

for all x ∈ R. Show that f(x) = 0 for −1 ≤ x ≤ 1.

Problem 12 (Putnam Competition 1997). Let f be a twice-differentiable real-valued function
satisfying

f(x) + f ′′(x) = −xg(x)f ′(x),
where g(x) ≥ 0, for all x. Prove that |f(x)| is bounded.

Problem 13. Let f : R→ R be a function which is not injective and satisfies

f(x+ y) = (f(x))3 + y3 + f(x)ey,

for all x, y ∈ R. Show that f is periodic.

Problem 14. Let f : R→ R be a continuous function such that

|f(x)− f(y)| ≥ 1
1000

|x− y|,

for all x, y ∈ R. Show that f is 1-1 and onto and that f−1 is continuous.

Problem 15 (Berkeley Prelim 1999). Let f : R → R be twice-differentiable such that
f(0) = 0, f ′(0) > 0 and f ′′(x) ≥ f(x), for all x ≥ 0. Show that f(x) > 0, for all x > 0.

Problem 16 (Putnam Competition 1999). Let f be a real-valued function with a continuous
third derivative such that f(x), f ′(x), f ′′(x), f ′′′(x) are positive and f ′′′(x) ≤ f(x) for all x. Show
that f ′(x) < 2f(x) for all x.

Problem 17 (Putnam Competition 1998). Let f be a real function on the real line with
continuous third derivative. Prove that there exists a point a such that

f(a) f ′(a) f ′′(a) f ′′′(a) ≥ 0.
2



Problem 18. Find all continuous functions f : R→ R such that

(f(nx))2 + n2(f(x))2 ≤ 2nf(nx)f(x),

for all x ∈ R and n ∈ Z.

Problem 19. Find all continuous functions f : R→ R such that

f(x) = f(x+ 1) = f(x+
√

3),

for all x ∈ R.

Problem 20. Let f : [0, 1]→ R be a continuous function such that∫ 1

0
xnf(x)dx = 0,

for all n ∈ N. Show that f is identically zero.

Problem 21 (Berkeley Prelim 1981). Let f : [1,∞) → R be a differentiable function such
that f(1) = 1 and

f ′(x) =
1

x2 + (f(x))2
,

for al x ≥ 1. Show that limx→∞ f(x) exists and is strictly less that (π + 4)/4.

Problem 22 (Berkeley Prelim 1996). Let f : [0, 1]→ R+ be a continuous function such that

(f(t))2 ≤ 1 + 2
∫ t

0
f(s)ds,

for all t ∈ [0, 1]. Show that f(t) ≤ 1 + t, for all t ∈ [0, 1].

Problem 23 (Asian Pacific Math Olympiad 1989). Find all invertible functions f : R→ R

which are strictly increasing and satisfy

f(x) + f−1(x) = 2x,

for all x ∈ R.

Problem 24 (Asian Pacific Math Olympiad 1994). Find all functions f : R→ R such that
f(1) = 1, f(−1) = −1, f(x) ≤ f(0), for all x ∈ (0, 1) and

f(x) + f(y) + 1 ≥ f(x+ y) ≥ f(x) + f(y),

for all x, y ∈ R.
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2. inequalities

Problem 25 (AM-GM inequality). Let x1,...,xn be non-negative reals. Then
x1 + · · ·+ xn

n
≥ n
√
x1 · · ·xn,

with equality holding if and only if x1 = · · · = xn.

Problem 26. Let n be a positive integer. Show that

n! ≤
(
n+ 1

2

)n
.

Problem 27. Let n be a positive integer. Show that

1 · 22 · · ·nn <
(

2n+ 1
3

)n(n+1)
2

.

Problem 28. Find all positive integers a and b such that

(a+ 1)(b+ 1)(a+ b) = 8ab.

Problem 29 (Putnam Competition 1998). Find the minimum value of

(x+ 1/x)6 − (x6 + 1/x6)− 2
(x+ 1/x)3 + (x3 + 1/x3)

for x > 0.

Problem 30 (Asian Pacific Math Olympiad 1995). Determine all sequences of real numbers
a1,...,a1995 which satisfy

2
√
an − (n− 1) ≥ an+1 − (n− 1)

for n = 1, 2, ..., 1994 and
2
√
a1995 − 1994 ≥ a1 + 1.

Problem 31 (International Math Olympiad 1984). Let x, y and z be non-negative real
numbers satisfying x+ y + z = 1. Show that

0 ≤ xy + yz + zx− 2xyz ≤ 7/27.

Problem 32 (Asian Pacific Math Olympiad 1996). Let m and n be positive integers such
that n ≤ m. Show that

2nn! ≤ (m+ n)!
(m− n)!

≤ (m2 +m)n.

Problem 33 (Cauchy-Schwarz inequality). Let x1,...,xn, y1,...,yn be real numbers. Then

(x1y1 + · · ·xnyn)2 ≤ (x2
1 + · · ·x2

n)(y2
1 + · · · y2

n)

with equality holding if and only if xiyj = xjyi, for all i and j.
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Problem 34 (Asian Pacific Math Olympiad 1990). Let a1,..., an be positive real numbers
and let Sk be the sum of the products of a1,...,an taken k at a time. Show that

SkSn−k ≥
(
n

k

)2

a1 · · · an

for k = 1,...,n− 1.

Problem 35 (Balkan Math Olympiad 1984). Let a1,...,an be positive real numbers with sum
1. Prove that

n∑
i=1

ai
1 +

∑
j 6=i aj

≥ n

2n− 1
.

Problem 36 (Balkan Math Olympiad 1985). Let a, b, c, d be real numbers in the interval
[−π/2, π/2] so that

sin a+ sin b+ sin c+ sin d = 1,

cos 2a+ cos 2b+ cos 2c+ cos 2d ≥ 10/3.
Show that 0 ≤ a, b, c, d ≤ π/6.

Problem 37 (Balkan Math Olympiad 2001). Let a, b, c be positive real numbers such that
a+ b+ c ≥ abc. Show that a2 + b2 + c2 ≥

√
3abc.

Problem 38 (Putnam Competition 2000). Let A be a positive real number. What are the
possible values of

∑∞
j=0 x

2
j , given that x0, x1,... are positive reals with

∑∞
j=0 xj = A?

Problem 39 (Asian Pacific Math Olympiad 1996). Let a, b, c be the lengths of the sides
of a triangle. Show that

√
a+ b− c+

√
a+ c− b+

√
b+ c− a ≤

√
a+
√
b+
√
c

and determine when equality occurs.

Problem 40 (International Math Olympiad 1995). Let a, b, c be positive reals with abc = 1.
Show that

1
a3(b+ c)

+
1

b3(a+ c)
+

1
c3(a+ b)

≥ 3
2
.

Problem 41 (International Math Olympiad 1999). Let n ≥ 2 be a fixed integer. Find the
smallest possible constant C such that for all non-negative reals x1,...,xn we have∑

i<j

xixj(x2
i + x2

j ) ≤ C(
n∑
i=1

xi)4.

Determine when equality occurs.

Problem 42 (International Math Olympiad 2001). Let a, b, c be positive reals. Show that
a√

a2 + 8bc
+

b√
b2 + 8ac

+
c√

c2 + 8ab
≥ 1.

5



Problem 43 (International Math Olympiad 1988). Show that the set of real numbers x
satisfying the inequality

1
x− 1

+
2

x− 2
+ · · ·+ 70

x− 70
≥ 5

4
is a union of disjoint intervals, the sum of whose lengths equals 1988.

Problem 44 (International Math Olympiad 1974). Determine all possible values of

a

a+ b+ d
+

b

a+ b+ c
+

c

b+ c+ d
+

d

a+ c+ d

for positive reals a, b, c, d.

Problem 45 (Asian Pacific Math Olympiad 1991). Let a1,...,an, b1,...,bn be positive real
numbers such that a1 + · · · an = b1 + · · · bn. Show that

a2
1

a1 + b1
+ · · · a2

n

an + bn
≥ a1 + · · · an

2
.

Problem 46 (Asian Pacific Math Olympiad 1998). Let a, b, c be positive real numbers.
Prove that (

1 +
a

b

)(
1 +

b

c

)(
1 +

c

a

)
≥ 2

(
1 +

a+ b+ c
3
√
abc

)
.

Problem 47 (Asian Pacific Math Olympiad 1999). Let a1,...,an be a sequence of real
numbers satisfying ai+j ≤ ai + aj , for all i, j. Prove that

a1 +
a2

2
+ · · · an

n
≥ an,

for each positive integer n.

Problem 48. Let α, β, γ be the angles of a triangle. Show that

sin(α) sin(β) sin(γ) ≤ 3
√

3
8
.

Problem 49. Let n ≥ 2 and x1,...,xn be positive real numbers such that x1 + · · ·+xn = 1. Show
that

x1√
1− x1

+ · · ·+ xn√
1− xn

≥
√

n

n− 1
.

Problem 50 (USA Math Olympiad 1980). Let a, b, c be real numbers in [0, 1]. Show that

a

b+ c+ 1
+

b

a+ c+ 1
+

c

a+ b+ 1
+ (1− a)(1− b)(1− c) ≤ 1.

Problem 51 (Weighted power mean inequality). Let x1,...,xn, w1,...,wn be positive real
numbers such that w1 + · · ·+ wn = 1. For a real number r 6= 0 define

M r
w(x1, · · · , xn) = (w1x

r
1 + · · ·+ wnx

r
n)1/r.
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Also define M0
w(x1, · · · , xn) = xw1

1 · · ·xwnn . Then if r > s, we have

M r
w(x1, · · · , xn) ≥M s

w(x1, · · · , xn),

with equality holding if and only if x1 = · · · = xn.

Problem 52. Let w1,...,wn be positive real numbers such that w1 + · · ·+ wn = 1. Show that√
w1(1− w1) + · · ·+

√
wn(1− wn) ≤

√
n− 1.

Problem 53. Minimize the expression

x1 +
x2

2

2
+ · · ·+ xnn

n
whre x1,...,xn are positive real numbers satisfying

1
x1

+ · · ·+ 1
xn

= n.

Problem 54 (Canadian Math Olympiad 1999). Let x, y, z be non-negative reals satisfying
x+ y + z = 1. Show that

x2y + y2z + z2x ≤ 4
27

and determine when equality holds.

Problem 55 (USA Math Olympiad 1979). Let x, y, z be non-negative reals satisfying
x+ y + z = 1. Show that

x3 + y3 + z3 + 6xyz ≥ 1
4
.

Problem 56 (Hölder’s inequality). Let x1,...,xn, y1,...,yn, α, β be positive reals and suppose
that α+ β = 1. Then

(x1 + · · ·+ xn)α(y1 + · · ·+ yn)β ≥ xα1 y
β
1 + · · ·+ xαny

β
n

with equality holding if and only if xiyj = xjyi, for all i, j.

Problem 57 (Minkowski’s inequality). Let x1,...,xn, y1,...,yn, r be positive reals. If r ≥ 1,
then

r
√
xr1 + · · ·+ xrn + r

√
yr1 + · · ·+ yrn ≥

r
√

(x1 + y1)r + · · ·+ (xn + yn)r.
If r < 1, the inequality is reversed.

Problem 58 (Rearrangement inequality). Let x1,...,xn, y1,...,yn be real numbers such that
x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn. Then for any permutation σ of {1, · · · , n} we have

x1yn + x2yn−1 + · · ·+ xny1 ≤ x1yσ(1) + x2yσ(2) + · · ·+ xnyσ(n) ≤ x1y1 + x2y2 + · · ·+ xnyn.

Problem 59 (Chebychev’s inequality). Let x1,...,xn, y1,...,yn be real numbers such that
x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn. Then

x1 + · · ·+ xn
n

· y1 + · · ·+ yn
n

≤ x1y1 + · · ·+ xnyn
n

.
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Problem 60. Let a, b, c, d be positive real numbers. Show that

aabbccdd ≥ abbccdda.

Problem 61 (Newton’s and Maclaurin’s inequalities). Let x1,...,xn be non-negative reals.
For k ∈ {1, · · · , n}, let ck denote the sum of the products of the xi taken k at a time. Also let dk
be defined by

dk =
ck(
n
k

) .
For convenience, define c0 = d0 = 1 and ck = dk = 0 for k > n. Then

d2
k ≥ dk−1dk+1, d

1/k
k ≥ d1/(k+1)

k+1

for all k ∈ {1, · · · , n− 1}.

Problem 62. Let f(x) = xn + a1x
n−1 + · · · + an−1x + 1 be a polynomial with non-negative

coefficients. Show that if all the roots of f are real, then f(x) ≥ (1 + x)n, for all x ≥ 0.

Problem 63. The real numbers x1,...,xn satisfy

−1 ≤ x1, · · · , xn ≤ 1, x3
1 + · · ·+ x3

n = 0.

Show that

|x1 + · · ·+ xn| ≤
n

3
.

Problem 64 (Hilbert’s theorem, Putnam Competition 1999). Let p(x) be a polynomial
with real coefficients such that is p(x) is non-negative for all real x. Prove that, for some k, there
are polynomials f1(x),...,fk(x) with real coefficients such that

p(x) =
k∑
j=1

(fj(x))2.

Problem 65 (Robinson’s example). Consider the polynomial

f(x, y) = x2(x2 − y2)(x2 − 1) + y2(y2 − 1)(y2 − x2) + (1− x2)(1− y2).

Show that f(x, y) ≥ 0, for all reals x and y, but f(x, y) cannot be written as the sum of squares
of polynomials in x and y with real coefficients.
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3. number theory

Problem 66. Find all integers n such that n2 + 2n+ 6 is divisible by 25.

Problem 67. Let a, b, c be odd integers. Show that the roots of the equation ax2 + bx+ c = 0
are not rational numbers.

Problem 68 (Mock Putnam Exam UTK 2001). Let f(x) be a polynomial with integer
coefficients. Suppose there exist distinct integers a, b, c such that f(a) = f(b) = f(c) = 2000.
Show that there is no integer d such that f(d) = 2001.

Problem 69. Let a, b be integers. Show that(
a+

1
2

)n
+
(
b+

1
2

)n
∈ Z

for infinitely many positive integers n if and only if a+ b = −1.

Problem 70. Find all n ∈ Z such that
n2 + 1

(n+ 1)2 + 1

is a fraction in lowest terms.

Problem 71. Show that if n is a positive integer, then at least one of the three numbers n, 8n−1
and 8n+ 1 is composite.

Problem 72. Show that given n integers a1,...,an, there always exists a subset I of {1, · · · , n}
such that

n |
∑
i∈I

ai.

Problem 73. Given n + 1 distinct integers in {1, 2, · · · , 2n}, show that we can always choose
two of them such that one divides the other. Is the statement true for n integers in {1, · · · , 2n}?

Problem 74. Let m, n be positive integers. Show that 4mn−m− n can never be a square.

Problem 75 (Putnam Competition 1969). Let n be a positive integer such that n + 1 is
divisible by 24. Show that the sum of all divisors of n is divisible by 24.

Problem 76 (Asian Pacific Math Olympiad 1998). Show that for any positive integers a
and b, the integer (36a+ b)(36b+ a) cannot be a power of 2.

Problem 77 (Asian Pacific Math Olympiad 1998). Determine the largest of all integers n
with the property that n is divisible by all positive integers that are less than 3

√
n.

Problem 78 (Asian Pacific Math Olympiad 1999). Determine all pairs (a, b) of integers
with the property that the numbers a2 + 4b and b2 + 4a are both perfect squares.
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Problem 79 (Putnam Competition 1995). The number d1d2...d9 has nine (not necessarily
distinct) decimal digits. The number e1e2...e9 is such that each of the nine 9-digit numbers formed
by replacing just one of the digits di in d1d2...d9 by the corresponding digit ei is divisible by 7.
The number f1f2...f9 is related to e1e2...e9 in the same way: that is, each of the nine numbers
formed by replacing one of the ei by the corresponding fi is divisible by 7. Show that, for each i,
di − fi is divisible by 7.

Problem 80 (Putnam Competition 1995). Evaluate

8

√
2207− 1

2207− 1
2207−...

.

Express your answer in the form a+b
√
c

d , where a, b, c, d are integers.

Problem 81 (Putnam Competition 1997). Define the sequence a1 = 2, an = 2an−1 , for
n > 1. Show that for n ≥ 2,

an ≡ an−1 (mod n).

Problem 82 (Putnam Competition 1998). Let A1 = 0 and A2 = 1. For n > 2, the number
An is defined by concatenating the decimal expansions of An−1 and An−2 from left to right. For
example, A3 = 10, A4 = 101, and so forth. Determine all n such that 11 divides An.

Problem 83 (Putnam Competition 1998). Let N be the positive integer with 1998 decimal
units, all of them 1. Find the thousandth digit after the decimal point of

√
N .

Problem 84 (Putnam Competition 1998). Prove that for any integers a, b, c there exists a
positive integer n such that √

n3 + an2 + bn+ c

is not an integer.

Problem 85 (Putnam Competition 1999). Let S be a finite set of integers, each greater
than 1. Suppose that for each integer n there is some s ∈ S such that (s, n) = 1 or (s, n) = s.
Show that there exist s, t in S such that (s, t) is prime.

Problem 86 (Putnam Competition 2000). Prove that there exist infinitely many integers n
such that n, n+ 1 and n+ 2 are each the sum of two squares.

Problem 87 (Putnam Competition 2000). Let aj , bj and cj be integers for 1 ≤ j ≤ N .
Assume, for each j, that at least one of aj , bj , cj is odd. Show that there exist integers r, s and
t such that raj + sbj + tcj is odd for at least 4N/7 values of j in {1, · · · , N}.

Problem 88 (Putnam Competition 2000). Prove that the expression

(m,n)
n

(
n

m

)
is an integer for all integers m and n such that 1 ≤ m ≤ n.

Problem 89. Find all odd primes p such that 2p−1−1
p is a perfect square.
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Problem 90. Solve 3x − 2y = 1 in positive integers x and y.

Problem 91 (Balkan Math Olympiad 1998). Show that the equation y2 = x5 − 4 has no
solutions in integers x and y.

Problem 92 (Balkan Math Olympiad 1984). Show that for any positive integer m there
exists an integer n such that n > m and the decimal expansion of 5n is obtained by placing some
digits to the left of the decimal expansion of 5m.

Problem 93 (International Math Olympiad 1968). For every positive integer n, evaluate
the sum [

n+ 1
2

]
+
[
n+ 2

4

]
+
[
n+ 4

8

]
+ · · · ,

where [x] denotes the integral part of x.

Problem 94 (International Math Olympiad 1969). Prove that there are infinitely many
positive integers m such that n4 +m is composite for all integers n.

Problem 95 (International Math Olympiad 1979). Let m and n be positive integers such
that

m

n
= 1− 1

2
+

1
3
− 1

4
+ · · · − 1

1318
+

1
1319

.

Prove that m is divisible by 1979.

Problem 96 (International Math Olympiad 1981). Determine the maximum value of
m2 + n2 where m and n are integers in the range 1, 2,...,1981 and (m2 −mn− n2)2 = 1.

Problem 97 (International Math Olympiad 1984). Find one pair of positive integers a and
b such that ab(a+ b) is not divisible by 7, but (a+ b)7 − a7 − b7 is divisible by 77.

Problem 98 (International Math Olympiad 1984). Let a, b, c be odd integers such that
0 < a < b < c < d and ad = bc. Prove that if a+ d and b+ c are both powers of 2, then a = 1.

Problem 99 (International Math Olympiad 1985). Let n and k be relatively prime positive
integers with k < n. Each number in the set M = {1, 2, · · · , n−1} is colored either blue or white.
For each i in M , both i and n− i have the same color. For each i in M , with i 6= k, both i and
|k − i| have the same color. Prove that all elements of M have the same color.

Problem 100 (International Math Olympiad 1985). Given a setM of 1985 positive integers,
none of which has a prime divisor greater than 23, prove that M contains a subset of 4 elements
whose product is the 4th power of an integer.

Problem 101 (International Math Olympiad 1986). Let d be a positive integer not equal
to 2, 5 or 13. Show that one can find distinct a, b ∈ {2, 5, 13, d} such that ab− 1 is not a perfect
square.

Problem 102 (International Math Olympiad 1987). Prove that there does not exist a
function f : N→ N such that f(f(n)) = n+ 1987, for all n ∈ N.
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Problem 103 (International Math Olympiad 1989). Prove that for each positive integer n
there exist n consecutive positive integers none of which is a prime power.

Problem 104 (International Math Olympiad 1991). Let n > 6 be an integer and let a1,
a2,...,ak be all the positive integers less than n and relatively prime to n. If

a2 − a1 = a3 − a2 = · · · = ak − ak−1 > 0

prove that n must be either a prime or a power of 2.

Problem 105 (International Math Olympiad 1994). For any positive integer k, let f(k)
be the number of elements in the set {k + 1, k + 2, · · · , 2k} which have exactly three 1s when
written in base 2. Prove that for each positive integer m, there is at least one k with f(k) = m
and determine all m for which there is exactly one such k.

Problem 106 (International Math Olympiad 1994). Determine all ordered pairs (m,n) of
positive integers for which (n3 + 1)/(mn− 1) is an integer.

Problem 107 (International Math Olympiad 1994). Show that there exists a set A of
positive integers with the following property: for any infinite set S of primes, there exist two
positive integers m in A and n not in A, each of which is a product of k distinct elements of S
for some k ≥ 2.

Problem 108 (International Math Olympiad 2001). Let n1,...,nm be integers with m odd.
Let a = (a1, · · · , am) denote a permutation of the integers 1, 2,...,m. Let f(a) = a1n1 + · · · amnm.
Show that there exist distinct permutations a and b such that f(a)− f(b) is a multiple of m!.

Problem 109 (International Math Olympiad 2001). Let a > b > c > d be positive integers
such that

ac+ bd = (a+ b− c+ d)(−a+ b+ c+ d).
Show that ab+ cd is composite.

4. geometry

Problem 110 (Mock Putnam Exam, UTK 2001). Show that for any tiling of a square with
three triangular tiles one of the tiles must have area equal to half the area of the square.

Problem 111. Show that a square can be dissected into n squares for all n ≥ 6.

Problem 112 (Putnam Competition 1955). Let A1A2 · · ·An be a regular polygon inscribed
in a circle of center O and radius R. On the half-line OA1 choose P such that A1 is between O
and P . Prove that

n∏
i=1

PAi = POn −Rn.

Problem 113 (Balkan Math Olympiad 1984). Let A1A2A3A4 be a cyclic quadrilateral. Let
Hi be the orthocenter of AkAlAm, where (i, k, l,m) is a permutation of (1, 2, 3, 4). Show that the
quadrilaterals A1A2A3A4 and H1H2H3H4 are congruent.
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Problem 114 (Balkan Math Olympiad 2001). Prove that any convex pentagon with equal
angles and rational side lengths is a regular pentagon.

Problem 115. Show that there is no regular pentagon whose vertices all have integer coefficients.

Problem 116 (Greek Math Olympiad 1984). Is there a pentagon in 3-space whose angles
are all right and whose sides all have equal length?

Problem 117 (International Math Olympiad 1999). Find all finite sets S of at least three
points in the plane such that for all distinct points A, B in S, the perpendicular bisector of AB
is an axis of symmetry for S.

Problem 118 (Putnam Competition 1997). A rectangle HOMF has sides HO = 11 and
OM = 5. A triangle ABC has H as the intersection of the altitudes, O as the center of the
circumscribed circle, M the midpoint of BC and F the foot of the altitude from A. What is the
length of BC?

Problem 119 (Putnam Competition 1998). A right circular cone has base of radius 1 and
height 3. A cube is inscribed in the cone so that one face of the cube is contained in the base of
the cone. What is the side-length of the cube?

Problem 120 (Putnam Competition 1998). Let s be any arc of the unit circle lying entirely
in the first quadrant. Let A be the area of the region lying below s and above the x-axis and let
B be the area of the region lying to the right of the y-axis and to the left of s. Prove that A+B
depends only on the arc length, and not on the position, of s.

Problem 121 (Putnam Competition 1998). Let A, B, C denote distinct points with integer
coordinates in the plane. Prove that if

(|AB|+ |BC|)2 < 8|ABC|+ 1

then A, B, C are three verices of a square.

Problem 122 (Putnam Competition 1998). Given a point (a, b) with 0 < b < a, determine
the minimum perimeter of a triangle with one vertex at (a, b), one on the x-axis and one on the
line y = x. You may assume that a triangle of minimum perimeter exists.

Problem 123 (Putnam Competition 2000). The octagon P1 · · ·P8 is inscribed in a circle.
Given that the polygon P1P3P5P7 is a square of area 5 and the polygon P2P4P6P8 is a rectangle
of area 4, find the maximum possible area of the octagon.

Problem 124 (Putnam Competition 2000). Three distinct points with integer coordinates
lie in the plane on a circle of radius r. Show that two of these points are separated by a distance
of at least r1/3.

Problem 125 (Putnam Competition 2000). Let B be a set of more than 2n+1/n distinct
points with coordinates of the form (±1, · · · ,±1) in n-dimensional space, with n ≥ 3. Show that
there are three distinct points in B which are the vertices of an equilateral triangle.
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5. discrete mathematics

Problem 126. Given 69 distinct positive integers not exceeding 100, prove that we can choose
four of them a, b, c, d such that a < b < c and a+ b+ c = d.

Problem 127 (German Math Olympiad 1996). Starting at (1, 1), a stone is moved in the
plane according to the following rules:
(a) From any point (a, b) the stone can move to (2a, b) or (a, 2b).
(b) From any point (a, b) the stone can move to (a− b, b) if a > b or to (a, b− a) if a < b.
For which positive integers x, y can the stone be moved to (x, y)?

Problem 128. Prove that for any prime p, the number
(

2p
p

)
− 2 is divisible by p2.

Problem 129 (Romanian Math Olympiad 1988). Prove that the numbers
(

2n

k

)
for k in

{1, 2, · · · , 2n − 1} are all even and that exactly one of them is not divisible by 4.

Problem 130 (Balkan Math Olympiad 1985). 1985 people participate in a reunion. In
any group of three at least two speak a common language. Knowing that each person at the
reunion speaks at most five languages, prove that there exist at least 200 people speaking the
same language.

Problem 131 (International Math Olympiad 1986). To each vertex of a regular pentagon
an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices
are assigned the numbers x, y, z respectively and y < 0, then the following operation is allowed:
x, y, z are replaced by x+y, −y, z+y, respectively. Such an operation is performed repeatedly as
long as at least one of the five numbers is negative. Determine whether this procedure necessarily
comes to an end after a finite number of steps.

Problem 132 (International Math Olympiad 1987). Let pn(k) be the number of permuta-
tions of {1, 2, · · · , n} with exactly k fixed points. Prove that

n∑
k=0

k pn(k) = n!

Problem 133 (International Math Olympiad 1994). Let m and n be positive integers.
Let a1,...,am be distinct elements of {1, 2, · · · , n} such that whenever ai + aj ≤ n for some i, j
(possibly the same), we have ai + aj = ak for some k. Prove that

a1 + · · ·+ am
m

≥ n+ 1
2

.

Problem 134 (International Math Olympiad 1998). In a competition there are a contes-
tants and b judges, where b ≥ 3 and b is odd. Each judge rates each contestant as either “pass”
or “fail”. Suppose there exists a number k such that for any two judges their ratings coincide for
at most k contestants. Prove that 2bk ≥ a(b− 1).

Problem 135 (International Math Olympiad 2001). 21 girls and 21 boys took part in a
mathematical contest. Each contestant solved at most six problems. For each girl and for each
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boy, at least one problem was solved by both of them. Prove that there was a problem that was
solved by at least 3 girls and at least 3 boys.

Problem 136 (Putnam Competition 1995). Let S be a set of real numbers which is closed
under multiplication. Let T and U be disjoint subsets of S whose union is S. Given that the
product of any three (not necessarily distinct) elements of T is in T and that the product of any
three (not necessarily distinct) elements of U is in U , show that at least one of the two sets T , U
is closed under multiplication.

Problem 137 (Putnam Competition 1995). Suppose that we have a necklace with n beads.
Each bead is labeled with an integer and the sum of all these labels equals n− 1. Prove that we
can cut the necklace to form a string whose consecutive labels x1,...,xn satisfy

k∑
i=1

xi ≤ k − 1,

for all k ∈ {1, 2, · · · , n}.

Problem 138 (Putnam Competition 1995). For a partition π of {1, 2, · · · , 9}, let π(x) be
the number of elements in the part containing x. Prove that for any two partitions π and π′,
there exist distinct x and y in {1, 2, · · · , 9} such that π(x) = π(y) and π′(x) = π′(y).

Problem 139 (Putnam Competition 1995). To each positive integer n with exactly n2

decimal digits we associate the determinant of the matrix obtained by writing the digits in order
across the rows. Find, as a function of n, the sum of all the determinants associated with n2-digit
integers (for example, if n = 2, there are 9000 such determinants).

Problem 140 (Putnam Competition 1997). Let G be a group with identity e and φ : G→ G
a function such that

φ(g1)φ(g2)φ(g3) = φ(h1)φ(h2)φ(h3)

whenever g1g2g3 = h1h2h3 = e. Prove that there exists a ∈ G such that ψ(x) = aφ(x) is a group
homomorphism.

Problem 141 (Putnam Competition 1997). Let Nn denote the number of ordered n-tuples
of positive integers (a1, · · · , an) such that

1
a1

+ · · ·+ 1
an

= 1.

Determine whether N10 is even or odd.

Problem 142 (Putnam Competition 1999). Consider the power series expansion

1
1− 2x− x2

=
∞∑
n=0

anx
n.

Prove that, for each n ≥ 0, there is an integer m such that a2
n + a2

n+1 = am.
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Problem 143 (Putnam Competition 1999). Evaluate the series
∞∑
m=1

∞∑
n=1

m2n

3m(n3m +m3n)
.

Problem 144 (Putnam Competition 1999). Define a sequence by a1 = 1, a2 = 2, a3 = 24
and

an =
6a2

n−1an−3 − 8an−1a
2
n−2

an−2an−3

for n ≥ 4. Show that an is an integer multiple of n, for all n.

Problem 145 (Putnam Competition 1999). Let A = {(x, y) : 0 ≤ x, y ≤ 1}. For (x, y) ∈ A,
let

S(x, y) =
∑

1
2
≤m
n
≤2

xmyn,

where the sum ranges over all pairs (m,n) of positive integers satisfying the indicated inequalities.
Evaluate

lim
(x,y)→(1,1)

(1− xy2)(1− x2y)S(x, y)

with (x, y) ∈ A.

Problem 146 (Mock Putnam Exam UTK 2001). Evaluate∫ ∞
2

∞∑
n=1

(
(n+ 1)(n+ 2)x2 − 2(n+ 2)

2x2(x2 + 1)n

)
dx.

Problem 147 (Putnam Competition 1997). Evaluate∫ ∞
0

(
x− x3

2
+

x5

2 · 4
− x7

2 · 4 · 6
+ · · ·

)(
1 +

x2

22
+

x4

22 · 42
+

x6

22 · 42 · 62
+ · · ·

)
dx.
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