Linear Algebra Diagnostic Exam August 12, 2019 1:30-3:00

All vector spaces are assumed to be finite dimensional.

1. Suppose that $\left\{v_{1}, \ldots, v_{m}\right\}$ is a linearly independent subset of the vector space V, and that $w \in V$. Show that the span of $\left\{v_{1}+w, \ldots, v_{m}+w\right\}$ has dimension at least $m-1$.
2. Let A be a 4×4 matrix with entries in the complex numbers, satisfying $A \neq 0, A^{2}=0$. Determine the possible Jordan canonical forms for A.
3. Suppose that U, W are both 4-dimensional subspaces of \mathbb{C}^{6}. Prove that there exist two vectors in $U \cap W$ such that neither of these vectors is a scalar multiple of the other.
4. Let $T: V \rightarrow V$ be an invertible linear transformation. Prove that a vector $v \in V$ is an eigenvector of T if and only if it is an eigenvector of T^{-1}.
5. Let $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be a linear transformation with eigenvalues $2,3,5$. Show that there exists a linear transformation $S: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ with $S^{2}=T$.
6. A linear map $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ is defined by $T\left(z_{1}, z_{2}, z_{3}\right)=\left(2 z_{2}, 0,3 z_{1}\right)$. Prove that T does not have a square root, i.e. show that there does not exist a linear map $S: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ such that $S^{2}=T$.
