All vector spaces assumed to be finite-dimensional, over the complex numbers unless stated otherwise. Justify your answers and include complete proofs for credit.

1. Suppose that $V$ is a 5 -dimensional vector space and $W$ is a 3 dimensional vector space. Let $T: V \rightarrow W$ be a rank 3 linear transformation. Prove that there exists a 3 -dimensional subspace $U$ of $V$ such that the restriction of $T$ to $U$ is invertible.
2. Suppose $V=U \oplus W$ (direct sum), where $U, W$ are subspaces of $V$, of dimensions respectively 3 and 5 . Define a linear transformation $T: V \rightarrow V$ by $T(u+w)=u-2 w$ for $u \in U, w \in W$. Find the eigenvalues and corresponding eigenspaces of $T$, and its minimal and characteristic polynomials.
3. Let $T$ be the linear transformation of $\mathbb{R}^{3}$ defined by by:

$$
T(x)=\left(2 x_{2},-x_{3}, 0\right), \quad x=\left(x_{1}, x_{2}, x_{3}\right) .
$$

(i) Show that $T$ is nilpotent.
(ii) Let $A$ be the matrix of $T$ in the standard basis of $\mathbb{R}^{3}$. Compute the matrix exponential $e^{5 \mathrm{II}+A}$.
4. Let $A$ be a symmetric real $n \times n$ matrix. Suppose that -3 and 6 are both eigenvalues of $A$. Prove that there exists a vector $v \in \mathbb{R}^{n}$ such that $\langle v, A v\rangle=0$ (for the standard inner product in $\mathbb{R}^{n}$.)
5. Let $T: V \rightarrow V$ be a self-adjoint linear transformation (where $V$ is a real or complex inner product space). Suppose there exists $v \in V$ non-zero so that:

$$
\|T v-3 v\|<9\|v\| .
$$

Prove there exists an eigenvalue $\lambda$ of $T$ such that $|\lambda-3|<9$.
6. Let $A$ be a $4 \times 4$ complex matrix whose eigenvalues are 0,3 , and 5 . Suppose $A^{2}$ has rank 3. Determine all possible Jordan canonical forms of $A$.

