Algebra Diagnostic Exam: Sample Questions

All vector spaces are assumed to be finite dimensional.

Rationale. The aim is to produce questions on topics listed at http://www.math.utk.edu/diagnostic. The level of sophistication is mandated to be higher than that of 200-courses, and the questions are to test the ability of students to construct a short proof. The envelope has been pushed slightly in both directions: one or two of the questions might be on the easy side, and one or two might be on the verge of being a little hard.

The accompanying document contains solutions to the questions.

1. Let W_{1}, W_{2} be subspaces of a vector space V, such that neither of W_{1}, W_{2} is contained in the other. Show that $W_{1} \cup W_{2}$ is not a subspace of V.
2. Let W_{1}, W_{2} be finite dimensional subspaces of a vector space V, such that $W_{1} \cap W_{2}=\{0\}$. Let $W_{1}+W_{2}$ denote the subspace $\left.\left\{w_{1}+w_{2}\right\} \mid w_{1} \in W_{1}, w_{2} \in W_{2}\right\}$. Show that $\operatorname{dim}\left(W_{1}+W_{2}\right)=$ $\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)$.
3. Suppose that $\left\{v_{1}, \ldots, v_{m}\right\}$ is a linearly independent subset of V, and that w is a vector in V. Show that if $\left\{v_{1}+w, \ldots, v_{m}+w\right\}$ is linearly dependent, then w is a linear combination of v_{1}, \ldots, v_{m}.
4. Prove or give a counterexample: if $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis of V and U is a subspace of V such that $v_{1}, v_{2} \in U$ and $v_{3}, v_{4} \notin U$, then $\left\{v_{1}, v_{2}\right\}$ is a basis of U.
5. Let V be a finite dimensional vector space of dimension at least 2 . Formulating your answer without using matrices, show that there exist linear maps S, T from V to V with $S T \neq T S$.
6. Let V_{1}, V_{2} be vector spaces of dimensions 4,5 respectively. Give an example of a linear map $T: V_{1} \rightarrow V_{1}$ whose range (image) is equal to its nullspace (kernel), and show that there does not exist a linear map $T: V_{2} \rightarrow V_{2}$ whose range is equal to its nullspace.
7. Let $T: V \rightarrow W$ be a linear map of vector spaces, and let v_{1}, \ldots, v_{m} be elements of V such that the subset $\left\{T\left(v_{1}\right), \ldots, T\left(v_{m}\right)\right\}$ of W is linearly independent. Show that $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent.
8. Let V be a vector space, and let $S, T: V \rightarrow V$ be linear maps satisfying range $(S) \subseteq$ nullspace (T). Show that $(S T)^{2}=0$, and give an example of such linear maps for which $S T \neq 0$.
9. Let V be a real vector space, and let φ_{1}, φ_{2} be linear maps from V to \mathbb{R} that have the same nullspace. Show that there exists $c \in \mathbb{R}$ such that $\varphi_{1}=c \varphi_{2}$.
10. Let $T: V \rightarrow V$ be a linear map, and let $v_{1}, v_{2}, \ldots, v_{m}$ be eigenvectors of T whose corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are all distinct. Show that the set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is linearly independent. (Hint: Assume linear dependence; let k be the first index for which v_{k} is a linear combination of the previous v_{i}, and obtain a contradiction.)
11. Let $S, T: V \rightarrow V$ be linear maps that commute, i.e. $S T=T S$. Show that both the nullspace (kernel) of S and the range (image) of S are invariant under T.
12. Let $S, T: V \rightarrow V$ be linear maps. Show that $S T, T S$ have the same eigenvalues.
13. Let v_{1}, \ldots, v_{m} be linearly independent vectors in a finite dimensional vector space V. Show that there exists a linear map $T: V \rightarrow V$ for which v_{1}, \ldots, v_{m} are eigenvectors of T with distinct eigenvalues.
14. Let $T: V \rightarrow V$ be a linear map satisfying $T^{n}=I$ for some positive integer n. Show that V has a basis with respect to which the matrix for T is diagonal. (Hint: Consider the Jordan Canonical Form for T.)
15. Let P be a linear map from the finite dimensional vector space V to itself such that $P^{2}=P$. Prove (i) nullspace $(P) \cap$ image $(P)=\{0\}$ and (ii) V has a basis with respect to which the matrix for P is diagonal, with entries all 0 or 1 .
16. Let A be an $n \times n$ matrix over the reals such that the diagonal entries are all positive, the off-diagonal entries are all negative and the row sums are all positive. Show that $\operatorname{det} A \neq 0$.
(Hint: Consider the homogeneous linear system $A X=0$.)
17. A linear map $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ is defined by $T\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{2}, z_{3}, 0\right)$. Show that T does not have a square root, i.e. show that there does not exist a linear map $S: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ such that $S^{2}=T$.
18. Let $\mathcal{P}_{m}(\mathbb{C})$ denote the \mathbb{C}-vector space consisting of all polynomials in x of degree at most m, with coefficients in \mathbb{C}. Suppose that $p_{0}, p_{1}, \ldots, p_{m}$ are elements of $\mathcal{P}_{m}(\mathbb{C})$ such that $p_{j}(2)=0(0 \leq j \leq m)$. Show that $\left\{p_{0}, p_{1}, \ldots, p_{m}\right\}$ is not linearly independent in $\mathcal{P}_{m}(\mathbb{C})$.
19. Suppose that $\left\{v_{1}, \ldots, v_{m}\right\}$ is a linearly independent subset of the vector space V, and that $w \in V$. Show that the span of $\left\{v_{1}+w, \ldots, v_{m}+w\right\}$ has dimension at least $m-1$.
20. Suppose that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear map and that $-4,5, \sqrt{7}$ are eigenvalues of T. Show that there exists $x \in \mathbb{R}^{3}$ such that $T x-9 x=(-4,5, \sqrt{7})$.
21. Suppose that $T: V \rightarrow V$ is a linear map such that $T^{2}=I$ and suppose that -1 is not an eigenvalue of T. Show that $T=I$.
22. Let $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be a linear map such that 6 and 7 are eigenvalues of T. Suppose also that T does not have a diagonal matrix with respect to any basis of \mathbb{C}^{3}. Show that T is invertible.
23. Let V be a vector space of dimension n over the complex numbers, and let $T: V \rightarrow V$ be a linear map with eigenvalues 5 and 6 , and with no other eigenvalues. Show that $(T-5 I)^{n-1}(T-6 I)^{n-1}=0$.
24. The following matrix M is given:

$$
M=\left[\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right] \quad, \quad \lambda \neq 0
$$

Find the Jordan canonical form of M^{2}, explaining your result.
25. The following matrix M is given:

$$
M=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Find the Jordan canonical form of M^{2}, explaining your result.
26. Suppose that V is a complex vector space and that $T: V \rightarrow V$ is an invertible linear map. Show that there exists a polynomial p with complex coefficients such that $T^{-1}=p(T)$.
27. Let V be a complex vector space of dimension $n>0$ and let $I: V \rightarrow V$ be the identity map. Either find linear maps $A, B: V \rightarrow V$ such that $A B-B A=-I$, or show that no such A, B exist.
28. Let $T: V \rightarrow V$ be non-singular, and let $W \subseteq V$ be an eigenspace of T. Show that W is an eigenspace of T^{-1}.

