LINEAR ALGEBRA DIAGNOSTIC, MAY 2022

All vector spaces are assumed to be finite-dimensional, over the complex numbers, and all matrices are assumed to be complex, unless stated otherwise.
(1) Suppose that V is a 6 -dimensional vector space and that W is 4-dimensional vector space. Let $T: V \rightarrow W$ be a rank 3 linear transformation. Prove that there exists a 3-dimensional subspace U of V such that the restriction of T to U is injective.
(2) Let A be a 4×4 matrix whose eigenvalues are $0,-1$, and 3 . Suppose that A^{2} has rank 3. Find all possible Jordan canonical forms of A, up to reordering the Jordan blocks.
(3) Suppose that $-3,7,9$, and 11 are eigenvalues of a 5×5 matrix A and that A is not diagonalizable. Prove that there exists a $v \in \mathbb{C}^{5}$ such that

$$
A v=\left[\begin{array}{c}
-3 \\
7 \\
7 i \\
9 \\
11
\end{array}\right]
$$

(4) Suppose that A is a 4×4 Hermitian matrix with eigenvalues $-1,0,2$ and 4 . Let v be an eigenvector with eigenvalue 4 . If w is a vector orthogonal to v, then show that $\|A w\| \leq 2\|w\|$.
(5) Let A be a 5×5 Hermitian matrix of rank 3 . Show that A^{2} also has rank 3.
(6) Let $T: V \rightarrow V$ be a linear transformation and suppose that there are non-zero (but possibly equal) vectors $v, w \in V$ such that:

$$
\begin{aligned}
T(v) & =5 w \\
T(w) & =5 v
\end{aligned}
$$

Show that either 5 or -5 is an eigenvalue of T.

