LINEAR ALGEBRA DIAGNOSTIC, MAY 2021

All vector spaces are assumed to be finite-dimensional and over the complex numbers, and all matrices have complex entries, unless stated otherwise.

- (1) Let U, V, and W be distinct 5-dimensional subspaces of \mathbb{R}^6 . Prove that there exist 3 linearly independent vectors in $U \cap V \cap W$. Prove that there exist 4 vectors which span $U \cap V \cap W$.
- (2) Let A be a 4×4 matrix with minimal polynomial $x^4 4x^2$. Find the Jordan canonical form of A.
- (3) Let A be a 4×4 matrix of rank 3 such that 1 and 2 are eigenvalues of A (but there may be others). If A is not diagonalizable, find all possible Jordan canonical forms of A (up to reordering the blocks).
- (4) Suppose that V is an inner product space with $v, w \in V$. Let $T: V \to V$ be the linear operator defined by $T(x) = \langle x, v \rangle w$. Prove that the adjoint of T is defined by $T^*(y) = \langle y, w \rangle v$.
- (5) If A is a 5×5 Hermitian matrix and $A^5 = 0$, prove that A = 0.
- (6) Suppose that A is a Hermitian matrix and $|\lambda| \leq 10$ for every eigenvalue λ of A. If U is a unitary matrix, and λ' is an eigenvalue of AU, prove that $|\lambda'| \leq 10$.