Algebra Diagnostic Exam, May 15, 2019

All vector spaces are assumed to be finite dimensional.
(1) Suppose that W and U are 2-dimensional subspaces of a complex vector space V such that $W \cap U$ is 1-dimensional. Show that there exist vectors $v_{1}, v_{2}, v_{3} \in V$ such that $\left\{v_{1}, v_{2}\right\}$ is a basis for W and $\left\{v_{2}, v_{3}\right\}$ is a basis for U.
(2) Let V and W be complex vector spaces, and suppose that $S: V \rightarrow W$ and $T: V \rightarrow W$ are linear transformations. Prove that $\{v \in V: S(v)=T(v)\}$ is a vector subspace of V.
(3) Let W and U be vector subspaces of a vector space V and suppose that the dimension of W equals the dimension of U. Prove that if W and U are distinct, then their union $W \cup U$ is not a vector space.
(4) Let $T: \mathbb{C}^{6} \rightarrow \mathbb{C}^{6}$ be a linear transformation such that $T^{2}=0$. Prove that the dimension of the image of T is at most 3 .
(5) Let $T: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ be a linear transformation and suppose that $-1,3$, and 17 are eigenvalues of T. Further suppose that T does not have a diagonal matrix with respect to any basis of \mathbb{C}^{4}. Prove that T is invertible.

