Analysis Preliminary Exam - August 2023

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.

1. Prove or disprove: There is a holomorphic function f on

$$
P=\{z \in \mathbb{C}: 0<|z|<1\}
$$

such that f^{\prime} has a simple pole at $z=0$.
2. Let f_{n} be Lebesgue measurable functions on $[0,1]$ such that $\left\|f_{n}\right\|_{2023} \leq 2023$ for all $n \geq 1$ and f_{n} converges to 0 pointwise almost everywhere on $[0,1]$. Prove that $\int_{0}^{1}\left|f_{n}\right| d m \rightarrow 0$.
3. Let $\Omega=\{x+i y: x>0$ and $y>0\} \backslash\left\{r e^{i \pi / 4}: r \geq 1\right\}$. Determine an explicit conformal map from Ω onto \mathbb{D}. You may express your answer as a composition of explicit maps.
4. Let $f \in L^{1}(\mathbb{R})$ and $p>0$. Prove that

$$
\lim _{n \rightarrow \infty} n^{-p} f(n x)=0
$$

for m-a.e. $x \in \mathbb{R}$.
Hint: Show that $\sum_{n \in \mathbb{N}} n^{-p} f(n x)$ converges a.e..
5. Consider a rational function $f=p / q$ where q is a polynomial of degree $n \geq 2$ and p is a polynomial of degree $n-2$ or less. Let z_{1}, \ldots, z_{m} be the distinct zeros of q. Show that $\sum_{k=1}^{m} \operatorname{Res}\left(f, z_{k}\right)=0$.
6. Let $p>1$ and $f:[0,1] \rightarrow \mathbb{R}$ be a function such that

$$
\sum_{i=1}^{n} \frac{\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|^{p}}{\left(b_{i}-a_{i}\right)^{p-1}} \leq 2023
$$

whenever $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ disjoint intervals in $[0,1]$. Prove that f is absolutely continuous.
7. Let $g: \mathbb{D} \rightarrow\{z:|z| \leq 5\}$ be holomorphic with $g(0)=2 i$. Prove that g has no zeros in the set $\{z:|z| \leq 1 / 5\}$.
8. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be Lebesgue measurable nonnegative functions on $[0,1]$. Show that there exist constants $c_{n}>0$ such that $\sum_{n \geq 1} c_{n} f_{n}(x)$ converges for almost all $x \in[0,1]$.
9. Let $f_{n}: \mathbb{D} \rightarrow \mathbb{D}$ be analytic functions such that $f_{n} \rightarrow 0$ pointwise on $\{z \in \mathbb{C}:|z|<1 / 2\}$. Show that $f_{n} \rightarrow 0$ locally uniformly in \mathbb{D} (in other words, show that f_{n} converges to 0 uniformly on each compact subset of \mathbb{D}).

Analysis Prelim, January 2023

The exam has 9 problems. In the problems below m is used to denote Lebesgue measure on \mathbb{R}. If $a \in \mathbb{C}$ and $R>0$, then $B(a, R)=\{z \in \mathbb{C}$: $|z-a|<R\}$.

1. For each integer $n \geq 1$ denote by b_{n} the Lebesgue measure of the unit ball centered at the origin in \mathbb{R}^{n}.
(i) Show that $b_{n+1}=b_{n} \cdot \int_{-1}^{1}\left(\sqrt{1-t^{2}}\right)^{n} d t$ for all $n \geq 1$.
(ii) Show that $b_{n} \rightarrow 0$ as $n \rightarrow \infty$.
2. Let f be analytic and non-constant in the disk $B(0,2)$. Suppose that for all z with $|z|=1$, we have $|f(z)|=1$. Show that f has at least one zero in $B(0,1)$.
3. Let $\left(f_{n}\right) \subseteq L^{2}[0,1]$ be a sequence of functions such that

$$
\lim _{n, k \rightarrow \infty} \int_{[0,1]}\left|f_{n}-f_{k}\right|^{2} d m=0
$$

Let also $K:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a continuous function. For each $n \in \mathbb{N}$ and $x \in[0,1]$, define

$$
g_{n}(x)=\int_{[0,1]} K(x, y) f_{n}(y) d m(y)
$$

Prove that the sequence $\left(g_{n}\right)$ converges uniformly on $[0,1]$.
4. Let f and g be meromorphic functions in \mathbb{C}. Assume that

$$
|f(z)+g(z)| \leq|g(z)|
$$

for every $z \in \mathbb{C}$ which is not a pole of either f or g. Show that there is a constant c with $|c+1| \leq|c|$ such that $f(z)=c g(z)$.
5. Suppose that $f, g \in L^{1}(\mathbb{R}, m)$ and let $g_{n}(x)=g(x-n)$ for all $n \geq 1$ and all $x \in \mathbb{R}$. Show that $\lim _{n \rightarrow \infty}\left\|f+g_{n}\right\|_{1}=\|f\|_{1}+\|g\|_{1}$.
6. Suppose that the power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ converges in the unit disk $B(0,1)$. Suppose also that f extends to be meromorphic in $B(0, R)$ for some $R>1$ with finitely many poles, all of which lie on the unit circle and are simple poles. Prove that the sequence $\left(a_{n}\right)$ is bounded.
7. Let (X, μ) be a finite measure space. Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of integrable functions on X. Suppose that there is an integrable function f on X such that $\left(f_{n}(x)\right)$ converges to $f(x)$ pointwise almost everywhere on X.

Prove that, for every $\varepsilon>0$, there are $M>0$ and a measurable subset E of X such that $\mu(E)<\varepsilon$ and $\left|f_{n}(x)\right|<M$ for all $x \in X \backslash E$ and all $n \geq 1$.
8. Let $G \varsubsetneqq \mathbb{C}$ be a simply connected open set with $0 \in G$, and $f: G \rightarrow G$ be analytic with $f(0)=0, f^{\prime}(0)=1$. Show that $f(z)=z$.

Does the same conclusion hold for $G=\mathbb{C}$? (Prove your answer.)
9. Let μ be a positive measure on the measurable space (X, \mathcal{M}), and let $f: X \rightarrow X$ be a measurable transformation, i.e. $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{M}$. For $E \in \mathcal{M}$ define $\mu_{f}(E)=\mu\left(f^{-1}(E)\right)$.
(a) Show that μ_{f} is a measure on (X, \mathcal{M}).
(b) Prove that $\int_{X} h(f(x)) d \mu(x)=\int h(y) d \mu_{f}(y)$ for every $h \in L^{1}\left(\mu_{f}\right)$.

Analysis Preliminary Exam, August 2022

1. Let f be an entire function and suppose that for each $z_{0} \in \mathbb{C}$ there is an integer n such that $a_{n}=0$ in the power series expansion $f(z)=$ $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$. Show that f must be a polynomial.
2. Let $A \subset[0,1]$ be a Lebesgue measurable set of positive measure. Show that there exist $x \neq y$ in A such that $x-y$ is rational.
3. Let $G=\{z \in \mathbb{C}:|z|<1$ and $\operatorname{Re} z+\operatorname{Im} z>1\}$. Determine a conformal mapping f from G onto the open unit disc \mathbb{D}. You may express f as a composition of simpler maps.

4. Let $\left(r_{n}\right)_{n \geq 1}$ be an enumeration of all the rationals in $[0,1]$. Show that the function

$$
f(x)=\sum_{n \geq 1} \frac{1}{n^{2} \sqrt{\left|r_{n}-x\right|}}
$$

is finite almost everywhere with respect to the Lebesgue measure (for x real).
5. Let $R>1$ and $f: B(0, R) \rightarrow \mathbb{C}$ be analytic. Show $\partial f(B(0,1)) \subseteq$ $f(\partial B(0,1))$.
6. Let (X, \mathcal{M}, μ) be a measure space and let $f_{n}(n \geq 1)$ and f be measurable, real-valued functions on X. We say that f_{n} converges almost uniformly to f if for every $\varepsilon_{1}, \varepsilon_{2}>0$ there is a set E and a positive integer N such that $\mu(E)<\varepsilon_{1}$ and $\left|f_{n}(x)-f(x)\right|<\varepsilon_{2}$ for all $n \geq N$ and all $x \in E^{c}$.

Show that if f_{n} converges almost uniformly to f then f_{n} converges pointwise a.e. to f and f_{n} converges in measure to f.
7. Let $E \subset\{(x, y): 0 \leq x \leq 1,0 \leq y \leq x\}$ be a Lebesgue measurable set such that $m\left(E_{x}\right) \geq x^{3}$ for all $0 \leq x \leq 1$.
(i). Show that there is $y \in[0,1]$ such that $m\left(E^{y}\right) \geq \frac{1}{4}$.
(ii). Prove a stronger inequality than (i), by finding a constant $c>\frac{1}{4}$ such that for every set E satisfying the hypothesis there is $y \in[0,1]$ with $m\left(E^{y}\right) \geq c$.
8. Show that there is a holomorphic function $f(z)$ on a neighborhood of 0 such that $f(z)^{2}=\frac{\sin (z)}{z}$ and determine the radius of convergence of the power series of $f(z)$ at 0 (with proof).
9. Find all $q \geq 1$ such that $f\left(x^{2}\right) \in L^{q}((0,1), m)$ for all $f(x) \in L^{4}((0,1), m)$.

ANALYSIS PRELIMINARY EXAM - JANUARY 2022

Notation: $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$.

1. Show that for any $\epsilon \in[0,1)$ there is a constant $C<\infty$ depending only on ϵ such that if $f: \mathbb{D} \rightarrow \mathbb{C}$ is analytic, then for all $z \in \mathbb{D}$ with $|z| \leq \epsilon$ we have

$$
\left|f^{\prime}(z)\right| \leq C \int_{\mathbb{D}}|f(x+i y)| d y d x
$$

2. Let $G \subset \mathbb{C}$ be an open simply connected domain that is not \mathbb{C}, and let $f: G \rightarrow G$ be analytic but not the identity. Show that f has at most one fixed point (that is, there exists at most one $z \in G$ such that $f(z)=z)$.
3. Let g be a real-valued measurable function on $[0,1]$. Assume that for any $f \in L^{1}([0,1])$ we have $f g \in L^{1}([0,1])$. Show that $g \in L^{\infty}([0,1])$.
4. Let $a \in \mathbb{C}$ with $\operatorname{Re} a>0$. How many solutions does the equation

$$
a-z-e^{-z}=0
$$

have on the half-plane $\{z: \operatorname{Re} z>0\}$?
5. Find with proof the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n x^{n}}{1+x} d x
$$

6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Let E be the set of all points $x \in \mathbb{R}$ such that f is continuous at x. Show that E is a Borel set.
7. Prove that there is no one-to-one analytic function mapping the annulus $\{z: 0<|z|<1\}$ onto the annulus $\{z: 1 / 2<|z|<2\}$.
8. Let $E \subset \mathbb{R}$ be a nonempty Borel measurable set and let $f \in L^{1}(E)$. Show that for each $0 \leq$ $a \leq \int_{E}|f| d m$, there exists a nonempty Borel measurable set $E_{a} \subset E$ such that $\int_{E_{a}}|f| d m=a$.
9. Does there exist an entire function f such that $f(0)=0, f(i)=i$, and $|f(z)| \leq|z|^{2 / 3}$ for all $z \in \mathbb{C}$? Justify your answer.

ANALYSIS PRELIMINARY EXAM - AUGUST 2021

Notation: $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$.

1. Construct a 1-to-1 conformal map of the upper half-plane \mathbb{H} onto the domain

$$
D=\{z \in \mathbb{C}:|z|>1 \text { and }|z-i|<\sqrt{2}\}
$$

A sequence of explicit functions and the order in which they are to be composed to give the final mapping will suffice.
2. Given $a \in \mathbb{R}$, compute (with proof) the integral

$$
\int_{-\infty}^{\infty} \frac{\cos (a x)}{1+x^{2}} d x
$$

3. Let $K(x, y)$ be Lebesgue measurable on \mathbb{R}^{2} such that for some $C>0$

$$
\begin{aligned}
& \int_{-\infty}^{\infty}|K(x, y)| d y \leq C, \quad \text { for a.e. } x \in \mathbb{R} \\
& \int_{-\infty}^{\infty}|K(x, y)| d x \leq C, \quad \text { for a.e. } y \in \mathbb{R}
\end{aligned}
$$

For $1 \leq p<\infty$ and $f \in L^{p}(\mathbb{R})$, define

$$
T f(x)=\int_{-\infty}^{\infty} K(x, y) f(y) d y
$$

Show that $T f \in L^{p}(\mathbb{R})$ and that $\|T f\|_{p} \leq C\|f\|_{p}$.
4. Let μ be a finite measure on a measurable space (X, \mathcal{M}) and suppose that $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ are measurable sets with $\mu\left(E_{n}\right) \geq \alpha$ for all $n \in \mathbb{N}$. Let $E=\left\{x \in X: x \in E_{n}\right.$ for infinitely many $\left.n\right\}$. Show that E is measurable and that $\mu(E) \geq \alpha$.
5. Let

$$
f(z)=\frac{1}{z-1}-\frac{1}{z+1}=\frac{2}{z^{2}-1}
$$

defined on the domain $U=\mathbb{C} \backslash[-1,1]$. Show that $\int_{\gamma} f(z) d z=0$ for any closed rectifiable curve γ in U.
6. Let U be a connected open subset of \mathbb{C} and let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of holomorphic functions defined on U. Suppose that $f_{n} \rightarrow f$ uniformly on compact subsets of U and that the functions f_{n} are nonvanishing on U. Show that, either f is nonvanishing, or f is identically zero.
7. Let $f:[0,1] \times \mathbb{D} \rightarrow \mathbb{D}$ be a measurable function such that $z \mapsto f(t, z)$ is holomoprhic for all $t \in[0,1]$. Show that the function

$$
F(z)=\int_{0}^{1} f(t, z) d t
$$

is holomorphic in \mathbb{D}.
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a nonnegative measurable function such that

$$
\sup _{n \in \mathbb{N}} \int_{-\infty}^{\infty}|x|^{n} f(x) d x<\infty
$$

Show that $f(x)=0$ for a.e. $x \in(-\infty,-1) \cup(1, \infty)$.
9. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of functions in $L^{1}(\mathbb{R})$ such that for all continuous and compactly supported functions g

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f_{n}(x) g(x) d x=g(0)
$$

Prove that the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is not Cauchy in $L^{1}(\mathbb{R})$.

PRELIMINARY EXAMINATION IN ANALYSIS-AUGUST 2020

Notation: $\mathbb{D}=\{z \in \mathbb{C} ;|z|<1\}$.

1. Construct a $1-1$ conformal map of $\mathbb{D} \cap\{\operatorname{Re}(z)>0\}$ onto \mathbb{D}.
2. If $f \in H(\mathbb{D})$ wiith $f(\mathbb{D}) \subset \mathbb{D}$, how big can $\left|f^{\prime}\left(\frac{1}{2}\right)\right|$ be? (You should explicitly display and extremizing function.)
3. Compute

$$
\int_{-\infty}^{\infty} \frac{\cos x}{1+x^{2}} d x
$$

4. Find, with proof:

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{n^{2} x}{1+x^{2}} e^{-n^{2} x^{2}} d x
$$

5. let $1<p, q, r<\infty$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. Show that if $f \in L^{p}(\mathbb{R})$ and $g \in L^{q}(\mathbb{R})$, then $f g \in L^{r}(\mathbb{R})$ and:

$$
\|f g\|_{L^{r}} \leq\|f\|_{L^{p}}\|g\|_{L^{q}} .
$$

6. Suppose that $\left\|f_{n}\right\|_{L^{2}[0,1]} \leq 1$ for $n=1,2, \ldots$ and $f_{n} \rightarrow 0$ a.e. Show that $\left\|f_{n}\right\|_{L^{1}[0,1]} \rightarrow 0$. (Hint: use Egorov's theorem.)
7. Find a closed set $C \subset L^{2}([0,1])$ with $\inf _{f \in C}\|f\|_{L^{2}[0,1]}=1$ but $\|f\|_{L^{2}[0,1]}>1$, for any $f \in C$.
8. Show that $\forall \epsilon>0 \exists \delta>0$ with the following property:

If $f \in H(\mathbb{D})$ with $f(\mathbb{D}) \subset \mathbb{D}$ and $|f(x)|<\delta$ for $-\frac{1}{2} \leq x \leq \frac{1}{2}$, then $\left|f\left(\frac{1}{2} i\right)\right|<\epsilon$.

Hint: use a normal family argument.
9. Let $f \in L^{2}[-1,1]$. Show that $\forall z \in \mathbb{C}$ the function $t \mapsto f(t) e^{i t z}$ is integrable, and that:

$$
F(z)=\int_{-1}^{1} f(t) e^{i t z} d t
$$

is an entire function.

Analysis Preliminary Exam - January 2019

1. Evaluate the following (with proof): $\int_{0}^{\infty} \frac{\sqrt{x}}{1+x^{2}} d x$.
2. Let $g \in L^{2}(0, \infty)$, and let $\mathbb{C}_{+}=\{z \in \mathbb{C}: \operatorname{Re}, z>0\}$.
(a) Show that for each $z \in \mathbb{C}_{+}$the function $\frac{g(t)}{1+z t}$ is in $L^{1}(0, \infty)$.
(b) Definc $f: \mathbb{C}_{+} \rightarrow \mathbb{C}$ by $f(z)=\int_{0}^{\infty} \frac{g(l)}{1+z t} d t$ and show that f is continuous on \mathbb{C}_{+}.
3. Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and let $f: \mathbb{D} \rightarrow \mathbb{C}$ be analytic. For $0 \leq r<1$ define

$$
A(r)=\max _{|z|=r} \operatorname{Re} f(z)
$$

Show that $A(r)$ is strictly increasing unless f is constant.
4. Let (X, \mathcal{M}, μ) be a measure space, with $\mu(X)=\infty$. Show that (X, \mathcal{M}, μ) is σ-finite if and only if there exists a measurable function $f: X \rightarrow(0, \infty)$ such that $\int_{X} f d \mu=1$.
5. Let $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$. Suppose that $f: \mathbb{H} \cup \mathbb{R} \rightarrow \mathbb{C}$ satisfies the following:
(i) f is continuous.
(iii) $f(z)$ is real whenever z is real.
(ii) \int is holomorphic on \mathbb{H}.
(iv) $\int(\mathbb{H}) \subseteq \mathbb{H}$.

Show that $f(\mathbb{H})$ is a dense subset of \mathbb{H}.
6. Let m be Lebesgue measure, and set $\mathcal{X}=\left\{\int:[0.1] \rightarrow \mathbb{R}, \int\right.$ Lebesgue measurable $\}$, where functions that are equal m-a.e. are identified. Define the distance d on \mathcal{X} by $d(f, g)=$ $\int_{0}^{1} \frac{|f-g|}{|f-g|+1} d m$. It is known that (\mathcal{X}, d) is a metric space. Let $\int_{n}, J \in \mathcal{X}$.
(a) Show that if $f_{n} \rightarrow f$ pointwise a.e.. then $f_{n} \rightarrow f$ in the topology given by the distance d.
(b) Show that the converse of (a) is false, i.e. convergence in d does not imply pointwise a.e. convergence.
7. Let $\mathbb{C}_{+}=\{z \in \mathbb{C}: \operatorname{Re} z>0\}$ and let $w \in \mathbb{C}_{+}$. If $f: \mathbb{C}_{+} \rightarrow \mathbb{C}_{+}$is analytic, then show

$$
\left|f^{\prime}(w)\right| \leq \frac{\operatorname{Re} f(w)}{\operatorname{Re} w}
$$

8. Let (X, \mathcal{A}) be a measurable space, and let μ and ρ be positive, finite measures on (X, \mathcal{A}). Suppose that $\mu \ll \rho$. Prove that $\mu \times \mu \ll \rho \times \rho$ and

$$
\frac{d(\mu \times \mu)}{d(\rho \times \rho)}(x, y)=\frac{d \mu}{d \rho}(x) \cdot \frac{d \mu}{d \rho}(y)
$$

where we follow the convention that functions that are equal a.e. are identified.
9. Let $G=\{z \in \mathbb{C}:|\operatorname{Im} z|<2\}$ and let $f: G \rightarrow \mathbb{C}$ be a bounded analytic function such that $\lim _{x \rightarrow+\infty} f(x)=c$. Show that $\lim _{x \rightarrow+\infty} f(z+x)=c$ for all $z \in G$.

Analysis Preliminary Exam - Fall 2018

1. Let G be a non-empty, connected, open subset of \mathbb{C}. Fix a point $\alpha \in G$, and let $\left\{\alpha_{n}\right\}$ be a sequence of points in G that converges to α. Let f and g be holomorphic functions on G that do no vanish at any point of G. Show that if

$$
\frac{f^{\prime}\left(\alpha_{n}\right)}{f\left(\alpha_{n}\right)}=\frac{g^{\prime}\left(\alpha_{n}\right)}{g\left(\alpha_{n}\right)}
$$

for every n, then g is a multiple of f.
2. Find (with proof) the following limit:

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{1}{1+x^{\left[\frac{n}{n\left(n^{n}+2018\right)}\right.}} d x .
$$

3. Let $\Omega=\{z \in \mathbb{C}:|z-1|>\sqrt{2}$ and $|z+1|>\sqrt{2}\}$. Explicitly give a conformal mapping ϕ of Ω onto the punctured unit disc $\{z \in \mathbb{C}: 0<|z|<1\}$. (A sequence of explicit functions whose composition gives ϕ will suffice.)
4. Let $(\mathbb{R}, \mathcal{M}, m)$ be the Lebesgue measure space. If $f \in L^{1}(m)$ and $g \in L^{p}(m)$, for some $p \in[1, \infty)$, prove that

$$
\|f * g\|_{L^{p}} \leq\|f\|_{L^{1}}\|g\|_{L^{p}} .
$$

(Recall $f * g(x)=\int f(x-y) g(y) d y$.)
5. Let M_{n} be a sequence of positive numbers and let

$$
\mathcal{F}=\left\{f: f \text { is holomorphic on } \mathbb{D} \text { and }\left|f^{(n)}(0)\right| \leq M_{n} \text { for } n=0,1,2, \cdots\right\}
$$

Show that \mathcal{F} is a normal family if and only if $\sum_{n=0}^{\infty} \frac{M_{n} z^{n}}{n!}$ converges for all $z \in \mathbb{D}$.
6. Let f be a nonnegative Lebesgue measurable function on $[0, \infty)$ such that $\int_{0}^{\infty} f(x) d x<\infty$. Show there exists a positive, increasing, measurable function ϕ on $[0, \infty)$ with $\lim _{x \rightarrow \infty} \phi(x)=\infty$ such that

$$
\int_{0}^{\infty} \phi(x) f(x) d x<\infty
$$

7. Let f be holomorphic in an open set containing the closed unit disc $\{z:|z| \leq 1\}$, with $f(i / 5)=0$ and

$$
|f(z)| \leq\left|e^{z}\right| \text { for all } z \text { with }|z|=1
$$

How large can $|f(-i / 5)|$ be? Find (with proof) the best possible upper bound.
8. Suppose (X, Σ, μ) is a finite measure space and $\left\{f_{n}\right\}$ and f are (X, Σ, μ) measurable functions such that $f_{n} \rightarrow f$ in measure and $\left|f_{n}(x)\right|,|f(x)|<\infty$ a.e. Prove that $f_{n}^{2} \rightarrow f^{2}$ in measure.
9. Find (with proof) all functions on the Riemann sphere $\mathbb{C} \cup\{\infty\}$ that have a simple pole at i and at ∞, but are holomorphic elsewhere.

Analysis Prelim August 2017

1. Let (X, Σ, μ) be a measure space, and let f_{n}, f be measurable functions with $f_{n} \rightarrow f$ a.e., and such that there is an $F \in L^{1}(\mu)$ such that for each n $\left|f_{n}\right| \leq F$ on X. Show that $f_{n} \rightarrow f$ in measure.

Recall that f_{n} is said to converge to f in measure, if for each $\varepsilon>0$ there is N such that $\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\varepsilon\right\}\right)<\varepsilon$ for all $n \geq N$.
2. Let $\log z$ be the principal branch of the logarithm. The function

$$
f(z)=\frac{z}{(2+\log z)^{2}}
$$

has one pole at a point $p \in \mathbb{C}$. Determine p, the singular part S of f at p, and the radius of convergence of the power series of $g=f-S$ at p. (You do not have to determine the power series of g.)
3. Find with proof

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{n^{2} \sin \frac{x}{n}}{n^{3} x+x\left(1^{2}+x^{3}\right)} d x
$$

4. For $\varepsilon>0$, let $S_{\varepsilon}=\{x \in \mathbb{R}:|x-1|>\varepsilon\}$. Use the residue theorem to determine

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{S_{\varepsilon}} \frac{x}{\left(x^{2}+4\right)(x-1)} d x
$$

Make sure to justify your work.
5. Let (X, Σ, μ) be a finite measure space, and let f_{n}, f be measurable functions such that $f_{n} \rightarrow f$ a.e.

Suppose that the sequence $\left\{f_{n}\right\}$ has the following property: For each $\varepsilon>0$ there is a $\delta>0$ such that whenever E is a measurable set with $\mu(E)<\delta$, then $\int_{E}\left|f_{n}\right| d \mu<\varepsilon$ for all n.

Show that $f \in L^{1}(\mu)$ and $f_{n} \rightarrow f$ in $L^{1}(\mu)$.
6. Suppose $f: \mathbb{C} \longrightarrow \mathbb{C}$ is analytic for all z except for poles at $z=$ $a_{1}, a_{2}, \cdots, a_{k}$. Assume that f has the Laurent expansion $f(z)=\sum_{j=-\infty}^{n} b_{j} z^{j}$ valid for $|z|>\max _{i}\left\{\left|a_{i}\right|\right\}$. Here $n<\infty$. Show that f is a rational function.
7. Let m be Lebesgue measure on $[0,1]$ and let $E \subseteq[0,1] \times[0,1]$ be an $m \times m$ - measurable set. Suppose

$$
m\left(\left\{x: m\left(E_{x}\right) \geq 1 / 3\right\}\right) \geq 1 / 2
$$

Show that $(m \times m)(E) \geq 1 / 6$ and give an example of a set E, where equality is attained. Here $E_{x}=\{y \in[0,1]:(x, y) \in E\}$.
8. Suppose f is an analytic function mapping the unit disc to itself with $f(0)=0$. Suppose also that f has "radial limit" $f^{*}(1)$ at $z=1$, meaning $f^{*}(1)=\lim _{x \rightarrow 1} f(x)$. We define the "angular derivative" of f at $z=1$ as $f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{f^{*}(1)-f(x)}{1-x}$, if this limit exists. It is understood that in both of these limit expressions $x \in \mathbb{R}, 0 \leq x<1$.

Prove that if $\left|f^{*}(1)\right|=1$ and if the angular derivative $f^{\prime}(1)$ exists, then $\left|f^{\prime}(1)\right| \geq 1$.
9. Let $f \in L^{1}([0,1], d x)$ and g be a bounded Lebesgue measurable periodic function on \mathbb{R} with period 1 , i.e. $g(x)=g(x+1)$ for all $x \in \mathbb{R}$. Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g(n x) d x=\int_{0}^{1} f(x) d x \cdot \int_{0}^{1} g(x) d x
$$

Hint: Try a continuous function f first.

Analysis Prelim August 2016

For $a \in \mathbb{C}$ and $r>0$ let $B(a, r)=\{z \in \mathbb{C}:|z-a|<r\}, \mathbb{D}=\{z \in \mathbb{C}:$ $|z|<1\}, \mathbb{N}=\{1,2, \ldots\}$.

1. Suppose that (X, \mathcal{A}, μ) is a σ-finite measure space, $1 \leq p<\infty$ and $f_{n} \rightarrow f$ in L^{p}. Suppose that $\left\{g_{n}\right\}_{n=1}^{\infty}$ is a sequence of μ-measurable functions that converges point-wise a.e. in X to $g: X \rightarrow \mathbb{R}$, with the further property that $\left|g_{n}\right| \leq M<\infty$, for some M and all $n \in \mathbb{N}$.

Prove that $g_{n} \cdot f_{n} \rightarrow g \cdot f$ in L^{p}.
2. Prove that $\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{\cos t} d t=\sum_{n=0}^{\infty} \frac{1}{\left(2^{2} n!\right)^{2}}$.
3. Let (X, \mathcal{A}, μ) be a measure space. Suppose that $f: X \rightarrow \mathbb{R}$ is nonnegative and μ-integrable. Define for every $A \in \mathcal{A}, \nu(A):=\int_{A} f d \mu$.
(i) Prove that ν is a measure on \mathcal{A}.
(ii) Prove that if $g: X \rightarrow \mathbb{R}$ is ν-measurable and ν-integrable, then $f \cdot g$ is a μ-measurable, μ-integrable function and

$$
\int g d \nu=\int f \cdot g d \mu
$$

4. Let $w \in \mathbb{D}$ and $f: \mathbb{D} \rightarrow \mathbb{D}$ be analytic and such that $f(0)=f(w)=0$.
(a) Prove that $\left|f^{\prime}(0)\right| \leq|w|$.
(b) Determine all such f with $\left|f^{\prime}(0)\right|=|w|$.
5. Let $f:[0,1] \rightarrow \mathbb{R}$ be absolutely continuous and assume that $f^{\prime} \in$ $L^{2}([0,1])$ and $f(0)=0$. Show that the following limit exists and compute it:

$$
\lim _{x \rightarrow 0+} x^{-1 / 2} f(x) .
$$

6. Let $f_{n}: \mathbb{D} \rightarrow \mathbb{D}$ be a sequence of holomorphic functions such that $f_{n}(z) \rightarrow 1$ for one $z \in \mathbb{D}$. Prove that $f_{n} \rightarrow 1$ uniformly on each compact subset of \mathbb{D}.
7. Let $M>0$, let (X, \mathcal{M}, μ) be a measure space, and let $f_{n} \in L^{2}(\mu)$ with $\int_{X}\left|f_{n}\right|^{2} d \mu \leq M$ for all $n \in \mathbb{N}$.
Show: If $\left\{a_{n}\right\} \in l_{2}$, then $a_{n} f_{n}(x) \rightarrow 0$ a.e. $[\mu]$.
8. Let $r>0$ and $f: B(0, r) \backslash\{0\} \rightarrow \mathbb{C}$ be analytic with Re $f(z)>0$ for all $z \in B(0, r) \backslash\{0\}$.

Show that f has a removable singularity at 0 .
9. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lebesgue integrable, prove that

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f(x) \cos (n x) d x=0 .
$$

Analysis Prelim January 2016
For $a \in \mathbb{C}$ and $r>0$ let $B(a, r)=\{z \in \mathbb{C}:|z-a|<r\}$. For a region $G \subseteq \mathbb{C} \mathrm{Hol}(G)$ denotes the analytic functions on G.

1. Use the Residue theorem to calculate $\int_{-\infty}^{\infty} \frac{\cos 2 t}{t^{2}-2 t+2} d t$.
2. With proof determine the limit as $n \rightarrow \infty$ of

$$
\int_{0}^{\infty} \frac{\cos \frac{x^{2}}{n}}{\left(1+x^{n}\right) \sqrt{x}} d x
$$

3. Does there exist an analytic function mapping the unit disc onto the whole complex plane? If no, explain why not; if yes, describe an example.
4. Show that

$$
f \rightarrow \int_{0}^{1} \int_{0}^{x} f(y)(x+y)^{-5 / 4} d y d x
$$

defines a continuous linear functional on $L^{2}[0,1]$.
5. Let f be analytic on $B(0,1)$ with $\operatorname{Re} f(z)>0$ for all $z \in B(0,1)$. Show that $\left|f^{\prime}(0)\right| \leq 2 \operatorname{Re} f(0)$.
6. Let (X, \mathcal{M}, μ) be a finite measure space.

Show: If $f_{n}, f, g \in L^{1}(\mu)$ such that
(a) $\left|f_{n}(x)\right| \leq g(x)$ for all $x \in X$ and all $n \in \mathbb{N}$, and
(b) $f_{n} \rightarrow f$ in measure,
then $f_{n} \rightarrow f$ in $L^{1}(\mu)$.
7. Let $\Omega=B(0,1) \backslash\{0\}$, and suppose that $f, g \in \operatorname{Hol}(\Omega)$ with $f=e^{g}$. Show that if f does not have an essential singularity at 0 , then f must have a removable singularity at 0 and $\lim _{z \rightarrow 0} f(z) \neq 0$.
8. Let (X, \mathcal{M}, μ) be a finite measure space.
(a) For $a \in \mathbb{C}$ and $r \in \mathbb{R}$ define the half space

$$
H(a, r)=\{z \in \mathbb{C}: \operatorname{Re} a z \leq r\}
$$

Show: If $f: X \rightarrow H(a, r)$ is measurable, then $\frac{1}{\mu(A)} \int_{A} f d \mu \in H(a, r)$ for all $A \in \mathcal{M}$ with $\mu(A) \neq 0$.
(b) Show: If $f: X \rightarrow \mathbb{C}$ is measurable such that $\frac{1}{\mu(A)}\left|\int_{A} f d \mu\right| \leq 1$ for all $A \in \mathcal{M}$ with $\mu(A) \neq 0$, then $|f(x)| \leq 1$ a.e.
9. Let $G=\{z \in \mathbb{C}:-1<\operatorname{Im} z<1\}$ and let $f \in \operatorname{Hol}(G)$ be such that (a) $|f(z)| \leq \frac{1}{1-|\operatorname{Im} z|}$ for all $z \in G$, and
(b) $\lim _{x \rightarrow \infty} f(x)=0$.

Set $f_{n}(z)=f(z+n)$ and show that $f_{n} \rightarrow 0$ locally uniformly on G.

Real and Complex Preliminary Exam August 2015

1. A complex-valued function f on the plane is said to be locally M-Lipschitz for $M>0$ if for each $z \in \mathbb{C}$ there exists an $\epsilon>0$ so that $|f(w)-f(z)|<M|w-z|$ whenever $|w-z|<\epsilon$. Given $M>0$, state and prove a description of all entire functions f which are locally M-Lipschitz on \mathbb{C}.
2. With proof find the limit as $n \rightarrow \infty$ of

$$
\int_{0}^{n} \frac{x \sin \left(\frac{1}{n x}\right)}{\sqrt{x^{2}+1}} d x
$$

3. Let $\Omega=\{z \in \mathbb{C}: z \neq i t$ for any $t \geq 0\}$, and define g by

$$
g(z)=\frac{z}{(z+1)^{2}}, \quad z \in \Omega \backslash\{-1\}
$$

(a) Show that there is an analytic branch of $\sqrt{g(z)}$ in $\Omega \backslash\{-1\}$.
(b) Fix a branch f of $\sqrt{g(z)}$ with $f(1)=1 / 2$. Determine the nature of the singularity of f at $z=-1$ and calculate the residue of f at -1 .
4. Suppose that F is a nonnegative function that is integrable on \mathbb{R} (with respect to Lebesgue measure $d m$) and that there is a constant C such that

$$
\int_{\mathbb{R}} F f d m \leq C \int_{\mathbb{R}} f d m
$$

whenever f is a nonnegative continuous function on \mathbb{R} having compact support. Prove that $F(x) \leq C$ for almost all x.
5. Let Ω be the open unit disc \mathbb{D} with the real segment $\left[\frac{1}{2}, 1\right)$ removed. Construct an explicit conformal mapping f from Ω onto \mathbb{D} with $f(0)=0$.
6. Let (X, \mathcal{M}, μ) be a measure space and let $f_{n}, g_{n}, f, g: X \rightarrow \mathbb{C}$ be measurable functions satisfying:
(a) $g_{n}, g \in L^{1}, g_{n} \rightarrow g$ in $L^{1}(\mu)$, and $g_{n}(x) \rightarrow g(x)$ a.e.
(b) $\left|f_{n}(x)\right| \leq\left|g_{n}(x)\right|$ for all $x \in X$ and all $n \in \mathbb{N}$,
(c) $f_{n}(x) \rightarrow f(x)$ a.e. $[\mu]$.

Show that $f_{n} \rightarrow f$ in $L^{1}(\mu)$.
7. Let Ω be a connected open subset of the plane. Suppose $f: \Omega \rightarrow \mathbb{C}$ is a continuous complex function having line integrals in Ω which are independent of path. Prove that there exists a function F analytic on Ω such that $F^{\prime}=f$.
8. Let (X, \mathcal{M}, μ) be a σ-finite measure space and let $f: X \rightarrow \mathbb{C}$ be measurable. Let m denote Lebesgue measure on \mathbb{R}. Show that $\int_{X}|f|^{p} d \mu=p \int_{(0, \infty)} t^{p-1} \mu(\{|f|>t\}) d m(t)$ for all $p>0$.
9. Let f be an analytic function mapping the unit disc \mathbb{D} to itself with $f(0)=0$ and $\left|f^{\prime}(0)\right|<1$. Let $f^{(n)}=f \circ f \circ \ldots \circ f$ be the function obtained by composing f with itself n-times. Prove that $f^{(n)} \rightarrow 0$ uniformly on compact subsets of \mathbb{D}.

Analysis Preliminary Exam

Spring 2015

Instructions: All problems have equal weight. Throughout the exam, m denotes Lebesgue measure on \mathbb{R}, and \mathbb{H} denotes the upper halfplane $\{x+i y \in \mathbb{C}: y>0\}$.

1. For $x \in(0, \infty)$ and $n \in\{1,2,3, \ldots\}$, let

$$
f_{n}(x)=\frac{e^{\sin \left(x^{2} / n\right)}}{1+x}
$$

Evaluate, with proof:
(A) $\quad \lim _{n \rightarrow \infty} \int_{0}^{n} f_{n}^{2} d m$
(B) $\quad \lim _{n \rightarrow \infty} \int_{0}^{n} f_{n} d m$.
2. Suppose $p \in(1, \infty), f \in L^{p}((0, \infty), d m)$, and $0<s<1 / p$. Prove that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \int_{0}^{N} x^{s} f(x) d m(x)=0
$$

3. Let $f:[0,1] \rightarrow \mathbb{R}$ be Lebesgue measurable. Let $\|f\|_{\infty}=\operatorname{ess}_{\sup }^{t \in[0,1]}|f(t)|$. Assume that

$$
0<\|f\|_{\infty}<\infty
$$

Prove that

$$
\lim _{n \rightarrow \infty} \frac{\int_{[0,1]}|f|^{n+1} d m}{\int_{[0,1]}|f|^{n} d m}=\|f\|_{\infty} .
$$

You may assume the fact that $\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}$.
4. Let \mathcal{M} denote the Lebesgue measurable subsets of $[0,1]$. Suppose μ is a (positive) measure on $([0,1], \mathcal{M})$ and $\mu(\{0\})=0$. Define

$$
f(x)=\mu([0, x])
$$

for $0 \leq x \leq 1$. Suppose that f is absolutely continuous on $[0,1]$.
(A) Prove that $\mu \ll m$.
(B) Prove that $\int_{E} f^{\prime} d m=\mu(E)$ for all $E \in \mathcal{M}$.
5. Let m_{2} denote Lebesgue measure on \mathbb{R}^{2}. Let $E \subseteq[0,1] \times[0,1]$ be m_{2}-measurable, and suppose that

$$
m(\{y \in[0,1]:(x, y) \in E\})=1 \text { for } m \text {-a.e. } x \in[0,1] .
$$

Prove that

$$
m(\{x \in[0,1]:(x, y) \in E\})=1 \text { for } m \text {-a.e. } y \in[0,1] .
$$

6. Let $\Omega=\{z:|z|<1$ and $|\operatorname{Im}(z)|>\operatorname{Re}(z)\}$. Give an explicit example of an unbounded harmonic function ϕ on Ω that extends continuously to $\partial \Omega \backslash\{0\}$ and vanishes there. (A sequence of explicit functions whose composition gives ϕ will suffice.)
7. Determine the following integral and justify your answer: $\int_{0}^{\infty} \frac{1+x^{2}}{1+x^{4}} d x$.
8. Let f be an entire function whose range omits the negative real axis. Prove that f is constant.
9. Let G be a simply connected domain that is a proper subset of \mathbb{C}, let $z_{0} \in G$, and let

$$
\mathcal{F}=\left\{f: \mathbb{H} \rightarrow G, f \text { is holomorphic, and } f(i)=z_{0}\right\}
$$

Prove that \mathcal{F} is normal.

Analysis Preliminary Exam

Fall 2014

Instructions: All problems have equal weight. Throughout the exam, $d m$ denotes Lebesgue measure on \mathbb{R}.

1. Find the exact value (with proof) of

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{x^{n}}{x^{n+3}+1} d m(x)
$$

2. Let (X, \mathcal{A}, μ) be a measure space. Let p, q, and r be positive numbers such that $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. Let $f \in L^{p}(\mu), g \in L^{q}(\mu)$, and let $h=f g$. Prove that $h \in L^{r}(\mu)$ and

$$
\|h\|_{r} \leq\|f\|_{p} \cdot\|g\|_{q} .
$$

3. Suppose $f:[0,1] \rightarrow \mathbb{R}$ is increasing. Suppose

$$
\int_{[0,1]} f^{\prime} d m=f(1)-f(0)
$$

Prove that $f \in A C([0,1])$; that is, f is absolutely continuous on $[0,1]$.
4. For $(x, y) \in[0,1] \times[0,1]$, let

$$
f(x, y)=\sum_{n=1}^{\infty} \sqrt{n}\left[(\sin (x y)]^{n}\right.
$$

(A) Show that the series defining $f(x, y)$ converges for every $(x, y) \in[0,1] \times[0,1]$. You may assume basic calculus facts about series.
(B) Determine whether f is Lebesgue integrable on $[0,1] \times[0,1]$.
5. Evaluate, with proof,

$$
\int_{0}^{\infty} \frac{\arctan (\pi x)-\arctan x}{x} d m(x)
$$

Hint: Recall that $\frac{d}{d t} \arctan t=\frac{1}{1+t^{2}}$.
6. Let $\Omega=\{z:|z|<1$ and $\operatorname{Re}(z)>1 / 2\}$. Explicitly give a conformal mapping ϕ of Ω onto the unit disc \mathbb{D}. (A sequence of explicit analytic functions whose composition gives ϕ will suffice.)
7. Let f and g be analytic in \mathbb{C} except for isolated singularities with $|f(z)| \leq|g(z)|$ wherever both are defined. Show that $f=c g$ where c is a constant.
8. Let G be a region in \mathbb{C}, and suppose that for each $n \in \mathbb{N}, f_{n}$ is analytic on G and never vanishes. Prove that if f_{n} converges to f uniformly on compact sets, then either $f \equiv 0$ or f never vanishes.
9. Let f be analytic in an open set which contains the closed unit disc $\overline{\mathbb{D}}$, and assume $M:=\max \{\operatorname{Re} f(z):|z|=1\} \geq 0$. Prove that for $z \in \mathbb{D}$,

$$
|f(z)| \leq \frac{1+|z|}{1-|z|}[M+|f(0)|] .
$$

Analysis Prelim, January 2014

1. Use the residue theorem to calculate $\int_{-\infty}^{\infty} \frac{\cos 2 x}{x^{2}+1} d x$
2. Let (X, \mathcal{M}, μ) be a measure space. Let $E_{n} \in \mathcal{M}(n \geq 1)$ be measurable sets with $\mu\left(\cup_{n \geq 1} E_{n}\right)<\infty$ and $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=c \in[0, \infty)$. Show that the set A of points that belong to infinitely many E_{n} is measurable and $\mu(A) \geq c$.
3. Let $\Omega=\{z \in \mathbb{C}: \operatorname{Re} z>0$ and $\operatorname{Im} z>0\}$ and let

$$
\mathcal{F}=\left\{f: \mathbb{D} \rightarrow \Omega: f \text { analytic, } f(0)=e^{i \frac{\pi}{4}}\right\} .
$$

Determine

$$
\sup \left\{\left|f^{\prime}(0)\right|: f \in \mathcal{F}\right\}
$$

and then determine all functions in \mathcal{F} for which the sup is attained.
4. Let $f, g:[0, \infty) \rightarrow \mathbb{R}$ be continuous functions with $g \in L^{1}([0, \infty))$ and such that there exists $c>0$ with $\left|\int_{0}^{x} f(t) d t\right| \leq c$ for all $x \geq 0$. Show that the following limit exists:

$$
\lim _{M \rightarrow \infty} \int_{0}^{M} f(t)\left(\int_{t}^{\infty} g(x) d x\right) d t
$$

5. (a). Determine the Laurent series of the function

$$
f(z)=\frac{1}{(z-1)^{2}(z+1)^{2}}
$$

which is valid in the annulus $1<|z|<2$.
(b). Compute $\int_{\gamma} f(z) d z$, where γ is the circle of center 1 and radius 1 , with counterclockwise orientation.
6. Let (X, μ) be a complete measure space and let $f \in L^{2}(X, \mu)$. Show that the set

$$
\left\{p \in[1, \infty): f \in L^{p}(X, \mu)\right\}
$$

is an interval (possibly degenerate).
7. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function. Assume that the function

$$
g(x, y)=|f(x+i y)|
$$

is integrable on \mathbb{R}^{2}. Show that f is identically 0 .
8. Let h be a bounded Lebesgue measurable function on \mathbb{R} such that $\lim _{n \rightarrow \infty} \int_{E} h(n x) d x=0$, for every Lebesgue measurable set E of finite
measure. Show that for every function f Lebesgue integrable on \mathbb{R} we have:

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f(x) h(n x) d x=0
$$

9. Determine the number of zeroes of the polynomial $2 z^{5}-6 z^{2}+z+1$ in the annulus $1<|z|<2$.

University of Tennessee

Analysis Preliminary Examination

August 2013

1. Find all constants $K>0$ for which the following holds:

If (X, \mathcal{M}, μ) is any positive measure space and if $f: X \rightarrow \mathbb{R}$ is any integrable function satisfying $\left|\int_{E} f d \mu\right|<K$ for all $E \in \mathcal{M}$, then $\|f\|_{1}<1$.
2. Determine if there exists a closed curve γ in $\mathbb{C} \backslash\{0,1\}$ such that

$$
\int_{\gamma} \frac{5 z-3}{z^{2}-z} d z=2 \pi i
$$

Prove your answer.
3. Find, with proof, the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{\sin \left(x^{n}\right)}{x^{n}} d x
$$

4. Let \mathbb{D} denote the open unit disk and let $\Omega=\{x+i y: x, y>0\} \cap \mathbb{D}$. Determine a conformal map of Ω onto \mathbb{D}. You may give your answer as the composition of some functions.
5. Let m denote the Lebesgue measure and let $f_{n} \in L^{2}([0,1], m)$ be a sequence of functions, such that f_{n} converges pointwise to $f \in L^{2}([0,1], m)$. Assume there is $M>0$ such that $\left\|f_{n}\right\|_{2} \leq M$ for all n. Prove that for all $g \in L^{2}([0,1])$ we have

$$
\lim _{n \rightarrow \infty} \int_{[0,1]} f_{n} g d m=\int_{[0,1]} f g d m
$$

6. Let \mathbb{D} denote the open unit disk, and let $f: \mathbb{D} \rightarrow \mathbb{D}$ be a holomorphic function. If $f\left(\frac{1}{2}\right)=0$, find the maximum possible value of $|f(0)|$, and the functions f that attain this value. Justify your answer.
7. Find all entire functions f such that $|f(z)| \geq\left|z^{2}-z\right|$ for all $z \in \mathbb{C}$. Justify your answer.
8. Let μ and ν be finite positive measures on the measurable space (X, \mathcal{M}). Show that there exist nonnegative, measurable functions $f, g: X \rightarrow \mathbb{R}$ with $f+g=1$, such that for all E in \mathcal{M}

$$
\int_{E} f d \mu=\int_{E} g d \nu
$$

9. Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of functions which are analytic on the domain $G \subset \mathbb{C}$. Assume that $\left(f_{n}\right)$ converges uniformly on G to a function f which is not identically zero on G. Show that $a \in G$ is a zero of f if and only if it is a limit point of zeroes of the $f_{n}, n=1,2,3, \ldots$

Analysis Prelim, January 2013

1. Let (X, \mathcal{M}, μ) be a measure space, with $\mu(X)=\infty$. Show that (X, \mathcal{M}, μ) is σ-finite if and only if there exists a measurable function $f:$ $X \rightarrow(0, \infty)$ such that $\int_{X} f d \mu=1$.
2. Determine the radius of convergence of the power series of $\frac{2}{e^{z}+e^{-z}}$. Justify your answer.
3. With proof determine

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} d x
$$

4. Explicitly determine a 1-1 analytic function from

$$
G=\{z \in \mathbb{C}:|z|<1 \text { and }|z-1 / 2|>1 / 2\}
$$

onto the open unit disc. It will be sufficient to explicitly give a sequence of maps whose composition gives the desired map.
5. Let (X, \mathcal{M}, μ) be a measure space and let $f \in L^{1}(\mu)$. Show that for every $\varepsilon>0$ there is a $\delta>0$ such that whenever $E \in \mathcal{M}$ with $\mu(E)<\delta$ then $\int_{E}|f| d \mu<\varepsilon$.
6. Use the Residue Theorem to calculate

$$
\int_{0}^{2 \pi} \cos ^{2 n}(\theta) \frac{d \theta}{2 \pi}
$$

Justify your work.
7. Let f_{n}, f be positive, integrable functions on the measure space (X, \mathcal{M}, μ). Assume that $f_{n} \rightarrow f$ pointwise and $\int_{X} f_{n} d \mu \rightarrow \int_{X} f d \mu<\infty$. Show that $\int_{E} f_{n} d \mu \rightarrow \int_{E} f d \mu$ for all $E \in \mathcal{M}$.
8. Let \mathbb{D} denote the open unit disc, and let f be an analytic function that takes \mathbb{D} into \mathbb{D}. Show that for all $z, w \in \mathbb{D} z \neq w$ we have

$$
\left|\frac{f(z)-f(w)}{1-\overline{f(w)} f(z)}\right| \leq\left|\frac{z-w}{1-\bar{w} z}\right|
$$

9. Let μ, ν be finite measures on the measurable space (X, \mathcal{M}), with $\nu \ll \mu$. Let $\lambda=\mu+\nu$ and let $f=\frac{d \nu}{d \lambda}$. Show that $0 \leq f<1$ (μ a.e.) and $\frac{d \nu}{d \mu}=\frac{f}{1-f}$.
10. Let $f(z)=\frac{\cos 2 z}{\log (1+3 z)}$.
(a) Determine the nature of the singularity that f has at 0 and find its singular part at 0 .
(b) Consider the Laurent series of f at 0 . Determine the largest set where this series converges.
11. Let (X, \mathcal{M}, μ) be a measure space and let $A_{n} \in \mathcal{M}(n \geq 1)$ be a sequence of measurable sets. Let $A=\left\{x \in X\right.$ such that x belongs to infinitely many $\left.A_{n}\right\}$.
(a) Write a formula for A in terms of the sets A_{n}.
(b) Show that if $\sum_{n \geq 1} \mu\left(A_{n}\right)<\infty$, then $\mu(A)=0$.
12. Calculate $\int_{0}^{2 \pi} \frac{d \theta}{k+\cos (\theta)}$ for all reals $k>1$.
13. Let (X, Σ, μ) be a finite measure space, and let $f_{n}, f \in L^{1}(\mu)$ such that $f_{n}(x) \rightarrow f(x)$ a.e. $\left[\mu\right.$]. Suppose that the sequence $\left\{f_{n}\right\}$ also satisfies the following condition:

For every $\varepsilon>0$ there is a $\delta>0$ such that whenever $E \in \Sigma$ with $\mu(E)<\delta$, then $\int_{E}\left|f_{n}\right| d \mu<\varepsilon$ for all n.

Show that $\int_{X}\left|f_{n}-f\right| d \mu \rightarrow 0$ as $n \rightarrow \infty$.
5. Let $\Omega=\{z \in \mathbb{C}: 0<\operatorname{Re} z<1\}$. Sketch Ω and explicitly give a conformal mapping f of Ω onto the unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. (A sequence of explicit analytic functions whose composition gives f will suffice.)
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable such that $f, f^{\prime} \in L^{1}(\mathbb{R})$ (Lebesgue measure). Show that $f(x) \rightarrow 0$ as $x \rightarrow \infty$.
7. Let \mathbb{D} denote the open unit disc, $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and let

$$
\mathcal{F}=\{f: \mathbb{D} \rightarrow \mathbb{D}: f \text { is analytic and } f(0)=0\} .
$$

Show that there is an $f_{0} \in \mathcal{F}$ such that

$$
\int_{-1 / 2}^{1 / 2} f_{0}(x) d x=\sup \left\{\left|\int_{-1 / 2}^{1 / 2} f(x) d x\right|: f \in \mathcal{F}\right\}
$$

8. Let (X, \mathcal{S}) and (Y, \mathcal{T}) be measurable spaces, let μ be a σ-finite measure on (X, \mathcal{S}), and let λ, ν be σ-finite measures on (Y, \mathcal{T}).

Show:
(a) If $\lambda \ll \nu$, then $\lambda \times \mu \ll \nu \times \mu$.
(b) If $\lambda \perp \nu$, then $\lambda \times \mu \perp \nu \times \mu$.
9. Let f be an entire function such that $\overline{B(0,1)}$ is contained in $f(\mathbb{C})$. Let V be a component of $f^{-1}(B(0,1))$. Show that V is simply connected.

Analysis Preliminary Examination, January 2012

1. Explicitly determine a $1-1$ analytic function from $U=\mathbb{D} \backslash[0,1)$ onto the unit disc \mathbb{D}.
2. With proof determine

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \int_{0}^{1} \frac{y}{\sqrt{x}+n y^{3}} d x d y
$$

3. Let $\Omega \subseteq \mathbb{C}$ be a region and $f_{n}: \Omega \rightarrow \mathbb{C}$ be analytic functions that are 1-1 and that converge locally uniformly to a non-constant function f on Ω. Show that f is $1-1$.
4. Let μ be a positive finite regular measure on the Borel sets of \mathbb{R}^{k}. Show that for any $g \in L^{\infty}(\mu)$ there is a sequence of compactly supported continuous functions g_{n} on \mathbb{R}^{k} such that for all $f \in L^{1}(\mu)$ we have

$$
\int_{\mathbb{R}^{k}} g_{n} f d \mu \rightarrow \int_{\mathbb{R}^{k}} g f d \mu \text { as } n \rightarrow \infty
$$

5. Let $f \in L^{1}([0, \infty))$ (Lebesgue measure). Show that

$$
\int_{0}^{\infty} e^{-z t} f(t) d t
$$

defines an analytic function in $\{z \in \mathbb{C}: \operatorname{Re} z>0\}$.
6. Let $M>0$ and let $g:[0,1] \rightarrow[0, \infty]$ be Borel measurable such that

$$
\int_{x}^{y} g(t) d t \leq M(y-x) \text { for all } x, y \in[0,1], x<y
$$

Show that $g(x) \leq M$ a.e. $[m]$.
7. Show that for every $\varepsilon>0$, there is a $\delta>0$ with the following property: whenever $f: \mathbb{D} \rightarrow \mathbb{C}$ is analytic such that $|f(z)| \leq 1$ for all $z \in \mathbb{D}$ and $|f(x)| \leq \delta$ for all $-1 / 2 \leq x \leq 1 / 2$, then $|f(1 / 2 i)| \leq \varepsilon$.
8. Let (X, \mathcal{S}, μ) be a finite measure space. Recall that a sequence of measurable functions $f_{n}: X \rightarrow \mathbb{C}$ is said to converge to 0 in measure, if for every $\varepsilon>0$ there is an integer N such that

$$
\mu\left(\left\{x \in X:\left|f_{n}(x)\right|>\varepsilon\right\}\right)<\varepsilon \text { for all } n \geq N .
$$

Let $f_{n}, g \in L^{1}(\mu)$ such that
(1) $f_{n} \rightarrow 0$ in measure and
(2) $\left|f_{n}(x)\right| \leq|g(x)|$ for all $n \in \mathbb{N}$ and $x \in X$.

Show that $\int_{X}\left|f_{n}\right| d \mu \rightarrow 0$.

Analysis Preliminary Exam

August 2011
In the following, \mathbb{C} is the complex plane, \mathbb{R} the real line, and \mathbb{N} the natural numbers.
(1) Show that the containments $L^{1}(\mathbb{R}) \subset L^{2}(\mathbb{R})$ and $L^{2}(\mathbb{R}) \subset L^{1}(\mathbb{R})$ both fail but that $L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R}) \subset L^{2}(\mathbb{R})$ is true. (The measure involved here is Lebesgue measure on \mathbb{R}).
(2) Sketch the region $\Omega=\left\{z:|z|>1\right.$ and $\left.0<\operatorname{Arg}(z)<\frac{\pi}{3}\right\}$ and give a conformal $\operatorname{map} f$ carrying Ω one-to-one onto the unit disc $\mathbb{D}=\{z:|z|<1\}$. (Note: a sequence of explicit analytic functions whose composition gives f will suffice.)
(3) Let (X, \mathcal{M}, μ) be a positive measure space. Prove that the following statements are equivalent:
(A) There exists a μ-integrable real function f on X such that f is strictly positive at each point (that is, such that $f(x)>0$ for each $x \in X$).
(B) μ is σ-finite (that is, there exists μ-measurable sets $\left\{X_{n}\right\}_{n=1}^{\infty}$ such that $X=$ $\cup_{n=1}^{\infty} X_{n}$ and $\mu\left(X_{n}\right)<\infty$ for each n).
(4) Prove that $\sum_{n=1}^{\infty} \frac{1}{(z-n)^{2}}$ defines an analytic function in $\mathbb{C} \backslash \mathbb{N}$.
(5) Let (X, μ) be a finite positive measure space and $f \in L^{\infty}(X, \mu),\|f\|_{\infty}>0$. Let $c_{n}=\int_{X}|f|^{n} d \mu$. Show that $\frac{c_{n+1}}{c_{n}}$ converges to $\|f\|_{\infty}$, as $n \rightarrow \infty$.
(6) Let $\Omega=\mathbb{C} \backslash[-1,1]$ (that is, \mathbb{C} with the real interval $[-1,1]$ removed) and for $z \in \Omega$ define $f(z)=\frac{1}{z-1}-\frac{1}{z+1}=\frac{2}{z^{2}-1}$.
(a) Show that for every closed curve γ in Ω we have $\int_{\gamma} f(z) d z=0$
(b) Prove that there is an $F \in H(\Omega)$ such that $F^{\prime}=f$.

Hint: Think of the proof of one of the equivalences in the Riemann mapping theorem.
(7) Let f be analytic and bounded in the right half plane $\{z: \Re z>0\}$ and suppose $f(t) \longrightarrow 0$ for $t>0$ and $t \downarrow 0$. Prove that for any z_{0} with $\Re z_{0}>0$, we likewise have $f\left(t z_{0}\right) \longrightarrow 0$ as $t \downarrow 0$.
(8) Let \mathcal{M} denote the Lebesgue measurable subsets of $[0,1]$, and let m denote Lebesgue measure on $[0,1]$. Suppose μ is a (positive) measure on $([0,1], \mathcal{M})$ and $\mu(\{0\})=0$. Define

$$
f(x)=\mu([0, x])
$$

for $0 \leq x \leq 1$. Suppose that f is absolutely continuous on $[0,1]$.
(a) Prove that $\mu \ll m$ (that is, μ is absolutely continuous with respect to m).
(b) Prove that $\mu(E)=\int_{E} f^{\prime} d m$, for all $E \in \mathcal{M}$.
(9) Prove that there exists no one-to-one analytic function mapping the annulus $\{0<|z|<1\}$ onto the annulus $\{1<|z|<2\}$.

Analysis Prelim, January 2011

$\mathbb{D}=\{z:|z|<1\}$ denotes the open unit disc in the complex plane \mathbb{C}.

1. Let $a \in \mathbb{C}$ and let f, g be analytic in a neighborhood of a. Suppose that g has a simple zero at a and that $f(a) \neq 0$. Show that $\operatorname{Res}_{a}\left(\frac{f}{g}\right)=\frac{f(a)}{g^{\prime}(a)}$.
2. If $f \in L^{1}(0, \infty)$ be real-valued. Show that

$$
\lim _{t \rightarrow \infty} t \int_{0}^{\infty} \sin \left(\frac{f(t x)}{t}\right) f(t x) d x
$$

exists and find its value.
3. Let $U=\{z \in \mathbb{D}: \operatorname{Im} z>0\}$. Explicitly construct a l-1 analytic map from U onto \mathbb{D}.
4. Let $f_{n} \in L^{2}[0,1]$ with $\left\|f_{n}\right\|_{L^{2}} \leq 1$ for each $n \in \mathbb{N}$ and $f_{n}(x) \rightarrow 0$ a.e. as $n \rightarrow \infty$.

Show that $\left\|f_{n}\right\|_{L^{1}} \rightarrow 0$ as $n \rightarrow \infty$.
Suggestion: First show that for all $f \in L^{2}$

$$
\int_{|f| \geq N}|f| d m \leq \frac{1}{N}\|f\|_{L^{2}}^{2}
$$

5. Show that there is no holomorphic function $f: \mathbb{D} \rightarrow \mathbb{C}$ such that $|f(z)| \rightarrow \infty$ as $|z| \rightarrow 1$.
6. Suppose $f \in L^{\infty}([0,1])$. Show that $\|f\|_{L^{p}} \rightarrow\|f\|_{\infty}$ as $p \rightarrow \infty$.
7. Let \mathcal{F} be a normal family of entire functions and define for $n=0,1,2, \ldots$

$$
A_{n}=\sup \left\{\left|a_{n}\right|: f(z)=\sum_{j=0}^{\infty} a_{j} z^{j}, f \in \mathcal{F}\right\}
$$

Show that $\sum_{n=0}^{\infty} A_{n} r^{n}<\infty$ for all $r>0$.
8. Let $f \in L^{1}(0, \infty)$. For $x \in[0, \infty)$ set $g(x)=\int_{0}^{x} f(t) d t$. Assume that $g \in L^{1}(0, \infty)$.
(a) Show that g is continuous on $[0, \infty)$.
(b) Show that $g(x) \rightarrow 0$ as $x \rightarrow \infty$.
9. Let D be an open domain in \mathbb{C}, containing the unit disc. Let $f: D \rightarrow \mathbb{C}$ be analytic. If $|f(0)|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{2} d \theta$, show that f is constant.

Analysis Prelim, August 2010

$\mathbb{D}=\{z:|z|<1\}$ denotes the open unit disc in the complex plane \mathbb{C}.

1. Let $U=\mathbb{C} \backslash[-1,1]$. Explicitly construct a bounded, non-constant, analytic function on U.
2. Find (with proof): $\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} d x$.
3. Use the Residue Theorem to calculate

$$
\int_{-\infty}^{\infty} \frac{\cos x}{1+x^{2}} d x
$$

Explain all the necessary estimates.
4. Let f be an L^{1} function on \mathbb{R} (with respect to Lebesgue measure). Show that $g(x)=\sum_{n=1}^{\infty} f\left(n^{2} x\right)$ converges a.e. and also show that $g \in L^{1}(\mathbb{R})$.
5. Suppose that f is holomorphic in an open set containing the closure of \mathbb{D}. Show $\partial f(\mathbb{D}) \subseteq f(\partial \mathbb{D})$.
6. Let (X, \mathcal{M}, μ) be a measure space. Let $f_{1}, f_{2}, f_{3}, \ldots$ be a sequence of functions in $L^{1}(X, \mathcal{M}, \mu)$ converging pointwise to $f \in L^{1}(X, \mathcal{M}, \mu)$.

Show that f_{n} converges to f in $\|\cdot\|_{1}$ (as $n \rightarrow \infty$) if and only if $\left\|f_{n}\right\|_{1}$ converges to $\|f\|_{1}$ (as $n \rightarrow \infty$).
7. Let $K=\{0\} \cup\left\{\frac{1}{n}: n=1,2, \cdots\right\}$ and let $f \in \operatorname{Hol}(\mathbb{D} \backslash K)$.

Show that if f has a pole at each point $\frac{1}{n}, n=1,2, \cdots$, then the range of f is dense in \mathbb{C}.
8. Let μ, σ be regular finite positive Borel measures on $[0,1]$. For $g \in$ $C[0,1]$ define $L(g)=\int_{0}^{1} g d \sigma$ and assume that

$$
|L(g)|^{2} \leq \int_{[0,1]}|g|^{2} d \mu \quad \text { for every } g \in C[0,1]
$$

Show that there is $h \in L^{2}(\mu)$ such that $\sigma(A)=\int_{A} h d \mu$ for every Borel set A.
9. Let $f, g \in \operatorname{Hol}(\mathbb{D})$ be $1-1$ with $f(0)=g(0)$ and $f(\mathbb{D}) \subseteq g(\mathbb{D})$. Show that $\left|f^{\prime}(0)\right| \leq\left|g^{\prime}(0)\right|$.

