Analysis Diagnostic Exam Sample Exercises

A) logic, proofs, induction

A1. Let p and q be statements (i.e., either true or false). Prove that $p \Longrightarrow q$ is logically equivalent to $\sim(p \wedge \sim q)$. Here \sim denotes the negation of a statement, $p \wedge q$ is the statement that p and q are true, and "logically equivalent" means that one is true if and only if the other is true.

A2. Let p and q be statements. Prove that $p \Longrightarrow q$ is logically equivalent (defined in A1) to $\sim q \Longrightarrow \sim p$, where $\sim q$ is the negation of q and $\sim p$ is the negation of p.

A3. Let p, q, and r be statements. Prove that $p \Longrightarrow(q \vee r)$ holds if and only if ($p \wedge \sim$ $q) \Longrightarrow r$. Here \sim and \wedge are as in A1, and $q \vee r$ means that q is true or r is true (or both).

A4. Let p, q, and r be statements. Prove that $p \vee q \Longrightarrow r$ holds if and only if $(p \Longrightarrow$ $r) \wedge(q \Longrightarrow r)$ holds. Here \vee and \wedge are as in A1 and A3.

A5. Prove that there is no rational number r such that $r^{2}=2$.
A6. Prove that there is no rational number r such that $r^{2}=3$.
A7. Prove that there is no rational number r such that $r^{3}=2$.
A8. Prove that $\sum_{k=1}^{n}(2 k-1)=n^{2}$, for each $n \in \mathbb{N}$.
A9. Prove that for any $n \in \mathbb{N}$,

$$
\sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

A10. Suppose $n \in \mathbb{N}$ and $x_{1}, x_{2}, \ldots, x_{n}$ are real numbers. Prove that

$$
\left|x_{1}+x_{2}+\ldots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right| .
$$

B) sets, functions

B1. Let X be a set and let A and B be subsets of X. Define $A^{c}=X \backslash A=\{x \in X: x \notin A\}$ and similarly for B^{c}. Prove that $A \subseteq B$ if and only if $B^{c} \subseteq A^{c}$.

B2. Suppose X is a set, A is a subset of X, and B_{λ} is a subset of X, for each λ belonging to some index set Λ. Prove that $A \cap\left(\cup_{\lambda \in \Lambda} B_{\lambda}\right)=\cup_{\lambda \in \Lambda}\left(A \cap B_{\lambda}\right)$ and $A \cup\left(\cap_{\lambda \in \Lambda} B_{\lambda}\right)=\cap_{\lambda \in \Lambda}\left(A \cup B_{\lambda}\right)$.

B3. Let A and B be sets. Prove that $A \cap B=A \backslash(A \backslash B)$, where in general $C \backslash D=$ $\{c \in C: c \notin D\}$.

B4. Let A and B be sets. Prove that $(A \backslash B) \cup(B \backslash A)=(A \cup B) \backslash(A \cap B)$.
B5. Let $f: X \rightarrow Y$ be a function. Let Λ be a set, and for each $\lambda \in \Lambda$, assume A_{λ} is a subset of X. Prove that $f\left(\cup_{\lambda \in \Lambda} A_{\lambda}\right)=\cup_{\lambda \in \Lambda} f\left(A_{\lambda}\right)$, and $f\left(\cap_{\lambda \in \Lambda} A_{\lambda}\right) \subseteq \cap_{\lambda \in \Lambda} f\left(A_{\lambda}\right)$. Give an example (you can choose X, Y, f, Λ and the sets A_{λ}) such that $f\left(\cap_{\lambda \in \Lambda} A_{\lambda}\right) \neq \cap_{\lambda \in \Lambda} f\left(A_{\lambda}\right)$.

B6. Let $f: X \rightarrow Y$ be a function. Let Λ be a set, and for each $\lambda \in \Lambda$, assume B_{λ} is a subset of Y. Prove that $f^{-1}\left(\cup_{\lambda \in \Lambda} B_{\lambda}\right)=\cup_{\lambda \in \Lambda} f^{-1}\left(B_{\lambda}\right)$, and $f^{-1}\left(\cap_{\lambda \in \Lambda} B_{\lambda}\right)=\cap_{\lambda \in \Lambda} f^{-1}\left(B_{\lambda}\right)$. Here $f^{-1}(B)=\{x \in X: f(x) \in B\}$ is the inverse image of B; we do not assume that f is 1-1 or onto.

B7. Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ by

$$
\begin{cases}f(n)=\frac{n}{2} & \text { if } n \text { is even } \\ f(n)=\frac{-n+1}{2} & \text { if } n \text { is odd. }\end{cases}
$$

Prove that f is a bijection.
B8. For $x \in \mathbb{R}$, prove that $\frac{x}{1+|x|} \in(-1,1)$. Define $f: \mathbb{R} \rightarrow(-1,1)$ by $f(x)=\frac{x}{1+|x|}$. Prove that f is a bijection.

B9. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions. Let $g \circ f: X \rightarrow Z$ be the composition of f and g, defined by $g \circ f(x)=g(f(x))$.
(i) Assume f and g are $1-1$ (injective). Prove that $g \circ f$ is $1-1$.
(ii) Assume f and g are onto (surjective). Prove that $g \circ f$ is onto.

B10. Suppose X and Y are sets, $f: X \rightarrow Y$ is a function, and $A \subseteq X$.
(i) Prove that $A \subseteq f^{-1}(f(A))$.
(ii) Prove that if f is $1-1$, then $f^{-1}(f(A))=A$.
(iii) Give an example of X, Y, f, and A such that $f^{-1}(f(A)) \neq A$.

C) properties of \mathbb{R}, completeness

C1. Let A and B be subsets of \mathbb{R} which are bounded above. Prove that $A \cup B$ is bounded above and $\sup (A \cup B)=\max (\sup A, \sup B)$.

C 2 . Let $A \subseteq \mathbb{R}$ be non-empty and bounded above. Let $s \in \mathbb{R}$. Prove that $s=\sup A$ if and only s satisfies both (i) s is an upper bound for A and (ii) given any $\epsilon>0$, there exists $a \in A$ such that $a>s-\epsilon$.

C3. Let $A \subseteq \mathbb{R}$ be non-empty and bounded above, and let $t \in \mathbb{R}$. Define the translate $A+t$ of A by

$$
A+t=\{a+t: a \in A\} .
$$

Prove that $A+t$ is bounded above, and $\sup (A+t)=t+\sup A$.
C4. Let $A \subseteq \mathbb{R}$ be non-empty and bounded above, and let $-A=\{-x: x \in A\}$. Prove that $-A$ is bounded below and that $\inf (-A)=-\sup A$.

C5. Let $A \subseteq \mathbb{R}$ be nonempty and bounded above. Let $r \in \mathbb{R}$ with $r>0$. Define

$$
r A=\{r x: x \in A\} .
$$

Prove that $r A$ is bounded above and $\sup (r A)=r \sup A$.

C6. Let A and B be nonempty, bounded above subsets of \mathbb{R}. Define

$$
A+B=\{a+b: a \in A, b \in B\} .
$$

Prove that $A+B$ is bounded above and $\sup (A+B)=\sup A+\sup B$.
C7. Let $A \subseteq(0, \infty)$ be a nonempty bounded set, and let $B=\left\{\frac{1}{x}: x \in A\right\}$. Prove that $\inf B=\frac{1}{\sup A}$.

C8. Suppose that $a_{n}, b_{n} \in \mathbb{R}$ with $a_{n} \leq b_{n}$, for each $n \in \mathbb{N}$. Let $I_{n}=\left\{x \in \mathbb{R}: a_{n} \leq x \leq\right.$ $\left.b_{n}\right\}$. Suppose $I_{n+1} \subseteq I_{n}$, for each n. Prove that $\cap_{n=1}^{\infty} I_{n} \neq \emptyset$.

C9. Use the completeness property of \mathbb{R} (the existence of the supremum of any non-empty set which is bounded above) to prove that there exists $x \in \mathbb{R}$ satsifying $x^{2}=2$.

C10. Use the completeness property of \mathbb{R} to prove that there exists $x \in \mathbb{R}$ satsifying $x^{3}=2$.

D) sequences, limits of sequences

D1. Prove the following directly from the ϵ, N definition of the limit of a sequence:

$$
\lim _{n \rightarrow \infty} \frac{3 n+2}{5 n-12}=\frac{3}{5}
$$

D2. Prove the following directly from the ϵ, N definition of the limit of a sequence:

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{2 n^{2}-25}=\frac{1}{2} .
$$

D3. Suppose $\left(x_{n}\right)$ is a sequence of real numbers, $\ell \in \mathbb{R}, \lim _{n \rightarrow \infty} x_{n}=\ell$, and $c \in \mathbb{R}$. Prove that $\lim _{n \rightarrow \infty}\left(c x_{n}\right)=c \ell$.

D4. Suppose $\left(x_{n}\right)$ is a convergent sequence of real numbers. Prove that $\left(x_{n}\right)$ is bounded.
D5. (Uniqueness of limits) Suppose $\left(x_{n}\right)$ is a sequence of real numbers, $\ell_{1}, \ell_{2} \in \mathbb{R}$, $\lim _{n \rightarrow \infty} x_{n}=\ell_{1}$, and $\lim _{n \rightarrow \infty} x_{n}=\ell_{2}$. Prove that $\ell_{1}=\ell_{2}$.

D6. Suppose $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are sequences of real numbers, $\ell_{1}, \ell_{2} \in \mathbb{R}, \lim _{n \rightarrow \infty} x_{n}=\ell_{1}$, and $\lim _{n \rightarrow \infty} y_{n}=\ell_{2}$. Prove that
(i) $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\ell_{1}+\ell_{2}$,
and
(ii) $\lim _{n \rightarrow \infty}\left(x_{n} y_{n}\right)=\ell_{1} \ell_{2}$.

D7. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers which is increasing (i.e., $x_{n} \leq x_{n+1}$ for all $n \in \mathbb{N}$) and bounded above. Prove that $\left(x_{n}\right)$ converges to $\sup \left\{x_{n}\right\}_{n=1}^{\infty}$.

D8. Suppose $\left(x_{n}\right)$ is a sequence of real numbers, $\ell \in \mathbb{R}$, and $\lim _{n \rightarrow \infty} x_{n}=\ell$. Prove that $\lim _{n \rightarrow \infty}\left|x_{n}\right|=|\ell|$.

D9. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $|f(x)-f(y)| \leq \frac{1}{2}|x-y|$ for all $x, y \in \mathbb{R}$, and $f(0)=0$. Let $x_{0} \in \mathbb{R}$ be arbitrary. Define $x_{1}=f\left(x_{0}\right), x_{2}=f\left(x_{1}\right)$, etc., so that $x_{n}=f\left(x_{n-1}\right)$ for all $n \in \mathbb{N}$. Prove that $\lim _{n \rightarrow \infty} x_{n}=0$.

D10. Let $x_{1}=2$. For $n \geq 2$, define x_{n} recursively by $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right)$.
(i) Prove that $x_{n} \geq \sqrt{2}$ for all $n \in \mathbb{N}$.
(ii) Prove that $\left(x_{n}\right)$ converges and find $\lim _{n \rightarrow \infty} x_{n}$.
E) subsequences, Cauchy sequences

E1. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be bounded sequences of real numbers. Prove that $\lim \sup \left(x_{n}+\right.$ $\left.y_{n}\right) \leq \limsup x_{n}+\lim \sup y_{n}$. Give an example of bounded sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ of real numbers with $\lim \sup \left(x_{n}+y_{n}\right) \neq \lim \sup x_{n}+\lim \sup y_{n}$. Here the $\lim \sup$ of any bounded sequence $\left(a_{n}\right)$ is defined by $\lim \sup a_{n}=\inf _{k \geq 1} \sup _{m \geq k} a_{m}$.

E2. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences of real numbers such that $\left(y_{n}\right)$ is bounded and $\left(x_{n}\right)$ converges to some $x \in \mathbb{R}$. Prove that $\lim \sup \left(x_{n}+y_{n}\right)=x+\lim \sup y_{n}$.

E3. Let $\left(x_{n}\right)$ be a bounded sequence of real numbers. Suppose $\left(x_{n}\right)$ has a subsequence $\left(x_{n_{k}}\right)_{k=1}^{\infty}$ which is convergent. Prove that

$$
\liminf x_{n} \leq \lim _{k \rightarrow \infty} x_{n_{k}} \leq \lim \sup x_{n}
$$

Here $\lim \sup x_{n}$ is defined as in E1, and $\liminf x_{n}=\sup _{k \geq 1} \inf _{m \geq k} x_{m}$.
E4. Let $\left(x_{n}\right)$ be a bounded sequence of real numbers. Prove that there is a subsequence of x_{n} which converges to $\lim \sup x_{n}$.

E5. Let $\left(x_{n}\right)$ be a bounded sequence of real numbers. Prove that $\left(x_{n}\right)$ converges if and only if $\lim \inf x_{n}=\lim \sup x_{n}$.

E6. Prove that any convergent sequence of real numbers in Cauchy.
E7. Prove that any Cauchy sequence of real numbers is bounded (without assuming the theorem that a Cauchy sequence of real numbers converges).

E8. Prove that any Cauchy sequence of real numbers is convergent (you can use E4 and E7).

E9. Let $\left(x_{n}\right)$ be a bounded sequence of real numbers. Let

$$
S=\left\{x \in \mathbb{R}: \text { there exists a subsequence }\left\{x_{n_{k}}\right\}_{k=1}^{\infty} \text { of }\left(x_{n}\right) \text { such that } \lim _{k \rightarrow \infty} x_{n_{k}}=x\right\} ;
$$

that is, S is the set of subsequential limit points of $\left(x_{n}\right)$. Prove that S is a closed set; that is, if $y_{n} \in S$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} y_{n}=y$, then $y \in S$.

E10. Let $\left(x_{n}\right)$ be a sequence of real numbers, and let $\ell \in \mathbb{R}$. Prove that $\lim _{n \rightarrow \infty} x_{n}=\ell$ if and only if every subsequence of $\left(x_{n}\right)$ has a subsequence converging to ℓ.

F) open and closed sets

F1. Using only the definition of open sets (i.e., $O \subseteq \mathbb{R}$ is open if, for each $x \in O$, there exists $\epsilon>0$, where ϵ may depend on x, such that $(x-\epsilon, x+\epsilon) \subseteq O)$, prove that
(i) an arbitrary union of open sets is open,
and
(ii) a finite intersection of open sets is open.

F2. Using only the definition of closed sets (i.e., $E \subseteq \mathbb{R}$ is closed if, for each sequence $\left(x_{n}\right)$ with $x_{n} \in E$ for all $n \in \mathbb{N}$, which converges to some $x \in \mathbb{R}$, we have $\left.x \in E\right)$, prove that
(i) an arbitrary intersection of closed sets is closed,
and
(ii) a finite union of closed sets is closed.

F3. Using only the definition of open sets (see F1), prove that the interval $(-1,1)$ is open.

F4. Give an example of open sets $\left\{O_{n}\right\}_{n=1}^{\infty}$ in \mathbb{R} such that $\cap_{n=1}^{\infty} O_{n}$ is not open. Prove your answer.

F5. Give an example of closed sets $\left\{E_{n}\right\}_{n=1}^{\infty}$ in \mathbb{R} such that $\cup_{n=1}^{\infty} E_{n}$ is not closed. Prove your answer.

F6. Using only the definition of open and closed sets (see F1 and F2 for the definitions), prove that a subset O of \mathbb{R} is open if and only if $E=\mathbb{R} \backslash O$ is closed.

F7. For $E \subseteq \mathbb{R}$, define \bar{E}, the closure of E, by

$$
\bar{E}=\left\{x \in \mathbb{R}: \text { there exists a sequence }\left(x_{n}\right) \subseteq E \text { such that } \lim _{n \rightarrow \infty} x_{n}=x\right\}
$$

(i) Prove that $E \subseteq \bar{E}$ and \bar{E} is closed.
(ii) Suppose $F \subseteq \mathbb{R}, F$ is closed, and $E \subseteq F$. Prove that $\bar{E} \subseteq F$. Deduce the characterization

$$
\bar{E}=\cap\{F: F \subseteq \mathbb{R}, F \text { is closed, and } E \subseteq F\}
$$

F8. Suppose $A, B \subseteq \mathbb{R}$. Prove that $\bar{A} \cup \bar{B}=\overline{A \cup B}$.
F9. Suppose that E_{λ} is a subset of \mathbb{R} for every $\lambda \in \Lambda$, where Λ is an arbitrary index set.
(i) Prove that $\cup_{\lambda \in \Lambda} \overline{E_{\lambda}} \subseteq \overline{U_{\lambda \in \Lambda} E_{\lambda}}$.
(ii) Give an example of sets $E_{n} \subseteq \mathbb{R}$, for $n \in \mathbb{N}$, such that $\cup_{n=1}^{\infty} \overline{E_{n}} \neq \overline{\cup_{n=1}^{\infty} E_{n}}$.

F10. Suppose $A \subseteq \mathbb{R}$ and $A \neq \emptyset$. For $x \in \mathbb{R}$, let $d(x)=\inf \{|x-a|: a \in A\}$ (d is the distance from the point x to the set A). Prove that $x \in \bar{A}$ if and only if $d(x)=0$, where \bar{A} is the closure of A.

G) compact sets

G1. Give an example of an open cover of $[0,1)$ which has no finite subcover. Prove your answer.

G2. Let $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Give an example of an open cover of A which has no finite subcover. Prove your answer.

G3. Let $K=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\}$. Prove directly, without using the Heine-Borel or Bolzano-Weierstrass theorems, that K is compact.

G4. Using only the open cover definition of compactness (and not the Heine-Borel or Bolzano-Weierstrass theorems), prove that the union of two compact subsets of \mathbb{R} is compact.

G5. Using only the open cover definition of compactness (and not the Heine-Borel or Bolzano-Weierstrass theorems), prove that a compact subset of \mathbb{R} is closed.

G6. Using only the open cover definition of compactness (and not the Heine-Borel or Bolzano-Weierstrass theorems), prove that a compact subset of \mathbb{R} is bounded.

G7. Using only the open cover definition of compactness (and not the Heine-Borel or Bolzano-Weierstrass theorems), prove that a closed subset of a compact set is compact.

G8. Suppose $K \subseteq \mathbb{R}$ is compact and non-empty. Show that $\sup K \in K$ and $\inf K \in K$.
G9. Suppose $K_{j} \subseteq \mathbb{R}$ is compact for each $j \in \mathbb{N}$ and $\cap_{j=1}^{n} K_{j} \neq \emptyset$ for each $n \in \mathbb{N}$. Prove that $\cap_{j=1}^{\infty} K_{j} \neq \emptyset$. Give an example of closed sets $E_{j} \subseteq \mathbb{R}$ such that $\cap_{j=1}^{n} E_{j} \neq \emptyset$ and $\cap_{j=1}^{\infty} E_{j}=\emptyset$.

G10. Suppose $A, B \subseteq \mathbb{R}$ are non-empty, with A compact and B closed. If $A \cap B=\emptyset$, prove that there exists $\epsilon>0$ such that $|a-b|>\epsilon$ for all $A \in A$ and $b \in B$. (Here ϵ is independent of a, b.) Give an example showing that the conclusion fails if A is only assumed to be closed.

H) limits of functions

H1. Prove that $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist. Give an example of a sequence of points $\left(x_{n}\right)$ with $x_{n}>0$ for all $n \in \mathbb{N}$, such that $\lim _{n \rightarrow \infty} x_{n}=0$ and $\lim _{n \rightarrow \infty} \sin \left(\frac{1}{x_{n}}\right)=0$. How is the existence of that sequence $\left(x_{n}\right)$ consistent with the non-existence of $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$?

H2. Prove (directly from the $\epsilon-\delta$ definition of limits) that $\lim _{x \rightarrow 3} x^{2}=9$.
H3. Prove (directly from the $\epsilon-\delta$ definition of limits) that $\lim _{x \rightarrow 0} \frac{1}{x+3}=\frac{1}{3}$.
H4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are functions such that $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ exist in \mathbb{R}, for some $c \in \mathbb{R}$. Prove that $\lim _{x \rightarrow c}(f+g)(x)$ exists and $\lim _{x \rightarrow c}(f+$
$g)(x)=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)$.
H5. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are functions such that $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ exist in \mathbb{R}, for some $c \in \mathbb{R}$. Prove that $\lim _{x \rightarrow c}(f g)(x)$ exists and $\lim _{x \rightarrow c}(f g)(x)=$ $\left(\lim _{x \rightarrow c} f(x)\right) \cdot\left(\lim _{x \rightarrow c} g(x)\right)$.

H6. Suppose $f:(-1,1) \rightarrow \mathbb{R}$ and $g:(-1,1) \rightarrow \mathbb{R}$ are functions such that $\lim _{x \rightarrow 0} f(x)=0$ and g is bounded. Prove that $\lim _{x \rightarrow 0}(f g)(x)=0$.

H7. Suppose $a, b \in \mathbb{R}$ with $a<b, c \in(a, b)$, and $f:(a, b) \rightarrow \mathbb{R}$ is a function. Prove that $\lim _{x \rightarrow c} f(x)=L$ if and only if: for all sequences $\left\{x_{n}\right\}_{n=1}^{\infty}$ with $x_{n} \in(a, b) \backslash\{c\}$ for all $n \in \mathbb{N}$ and satisfying $\lim _{n \rightarrow \infty} x_{n}=c$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

H8. Suppose $f, g, h:(-1,1) \rightarrow \mathbb{R}$ satisfy $f(x) \leq g(x) \leq h(x)$ for all $x \in(-1,1)$, $\lim _{x \rightarrow 0} f(x)=a$ and $\lim _{x \rightarrow 0} h(x)=a$, for some $a \in \mathbb{R}$. Prove that $\lim _{x \rightarrow 0} g(x)=a$.

H9. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function, and $f(x) \geq 0$ for all $x \in \mathbb{R}$. Suppose $\lim _{x \rightarrow c} f(x)=$ 0 , for some $c \in \mathbb{R}$. Prove that $\lim _{x \rightarrow c} \sqrt{f(x)}=0$.

H10. Suppose $O \subseteq \mathbb{R}$ is a non-empty open set, and $f: O \rightarrow \mathbb{R}$ is a function. Suppose $c \in O$ and $\lim _{x \rightarrow c} f(x)$ exists, with $\lim _{x \rightarrow c} f(x)>0$. Suppose also that $f(c)>0$. Prove that there exist $\ell, r>0$ such that such that $f(x)>\ell$ for all $x \in(c-r, c+r)$.

I) continuity of functions

I1. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at 0 . Prove that there exists $\epsilon>0$ such that f is bounded on $(-\epsilon, \epsilon)$.

I2. Prove directly from the $(\epsilon-\delta)$ definition of continuity that $f(x)=\sqrt{x}$ is continuous on $[0, \infty)$.

I3. Suppose $f: E \rightarrow \mathbb{R}$ is a function, where $E \subseteq \mathbb{R}$. Let $x_{0} \in E$. Prove that f is continuous at x_{0} if and only if $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$ for all sequences $\left(x_{n}\right)$ contained in E such that $\lim _{n \rightarrow \infty} x_{n}=x_{0}$.

I4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function. Prove that f is continuous on \mathbb{R} if and only if $f^{-1}(O)$ is open for every open set $O \subseteq \mathbb{R}$. Give an example of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a non-empty open set $O \subseteq \mathbb{R}$ such that $f(O)$ is not open in \mathbb{R}.

I5. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function. Prove that f is continuous on \mathbb{R} if and only if $f^{-1}(E)$ is closed for every closed set $E \subseteq \mathbb{R}$. Give an example of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a non-empty closed set $E \subseteq \mathbb{R}$ such that $f(E)$ is not closed in \mathbb{R}.

I6. Suppose $K \subseteq \mathbb{R}$ is compact and $f: K \rightarrow \mathbb{R}$ is continuous. Prove that f attains a maximum on K; that is, there exists a point $x_{0} \in K$ such that $f(x) \leq f\left(x_{0}\right)$ for all $x \in K$. You can assume the Bolzano-Weierstass theorem.

I7. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $K \subseteq \mathbb{R}$ is compact. Prove that $f(K)$ is compact.

I8. Suppose $A \subseteq \mathbb{R}$, with $A \neq \emptyset$.
(i) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Prove that $f(\bar{A}) \subseteq \overline{f(A)}$.
(ii) Give an example of a nonempty set A and a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(\bar{A}) \nsubseteq$ $\overline{f(A)}$.
(iii) Give an example of a continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ and a nonempty set $A \subseteq \mathbb{R}$ such that $f(\bar{A}) \neq \overline{f(A)}$.

I9. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $f^{3}(x)$ is continuous on \mathbb{R}. Prove that f is continuous on \mathbb{R}. Give an example of $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{2}(x)$ is continuous on \mathbb{R} but f is not continuous on \mathbb{R}.

I10. Give an example of a continuous function on $(0,1)$ and a Cauchy sequence $\left(x_{n}\right)$ in $(0,1)$ such that $\left(f\left(x_{n}\right)\right)$ is not a Cauchy sequence in \mathbb{R}.

J) uniform continuity

J1. Is $f(x)=x^{2}$ uniformly continuous on (0,1)? Prove your answer.
J2. Is $f(x)=x^{2}$ uniformly continuous on $(0, \infty)$? Prove your answer.
J3. Suppose $f:(0,1) \rightarrow \mathbb{R}$ is uniformly continuous. Prove that f is bounded.
J4. Is $f(x)=\sin (1 / x)$ uniformly continuous on $(0,1)$? Prove your answer.
J5. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are uniformly continuous. Prove that $f+g$ is uniformly continuous on \mathbb{R}.

J6. Give an example of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ which are uniformly continuous, but $f g$ is not uniformly continuous on \mathbb{R}. Prove that your answer has the required properties.

J7. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are uniformly continuous. Prove that $g \circ f$ is uniformly continuous on \mathbb{R}.

J8. Suppose $f:(0,1) \rightarrow \mathbb{R}$ is uniformly continuous. Prove that there exists a function $g:[0,1] \rightarrow \mathbb{R}$ such that g is continuous and $g(x)=f(x)$ for all $x \in(0,1)$ (i.e., g is an extension of f).

J9. Let $A \subseteq \mathbb{R}$ with $A \neq \emptyset$. Define $d: \mathbb{R} \rightarrow[0, \infty)$ by $d(x)=\inf \{|x-y|: y \in A\}(d$ is the distance to the set A). Prove that d is uniformly continuous on \mathbb{R}.

J10. Suppose $f:(0,1) \rightarrow \mathbb{R}$ is uniformly continuous on $(0,1)$ and $\left(x_{n}\right)$ is a Cauchy sequence in $(0,1)$. Prove that $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence in \mathbb{R}.

K) the derivative

K1. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\left\{\begin{array}{ll}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0 .\end{array}\right.$ Determine whether f is differentiable at 0 . If f is differentiable at 0 , determine whether f^{\prime} is continuous at 0 . Prove your answers.

K2. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\left\{\begin{array}{ll}x^{3} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0 .\end{array}\right.$ Determine whether f is differentiable at 0 . If f is differentiable at 0 , determine whether f^{\prime} is continuous at 0 . Prove your answers.

K3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at some point $c \in \mathbb{R}$. Prove that f is continuous at c.

K4. Give and example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that (i) f is differentiable at 0 and (ii) f is not continuous at all $x \neq 0$.

K5. Suppose $a, b \in \mathbb{R}$ with $a<b$, and suppose $f:(a, b) \rightarrow \mathbb{R}$ is differentiable on (a, b). Suppose f has a local minimum at a point $c \in(a, b)$ (that is, for some $\epsilon>0$, we have $f(x) \geq f(c)$ for all $x \in(c-\epsilon, c+\epsilon))$. Prove that $f^{\prime}(c)=0$.

K6. Suppose $a, b \in \mathbb{R}$ with $a<b$. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous, and f is differentiable on (a, b). Prove that if $f(a)=f(b)=0$, then there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$.

K7. Suppose $a, b \in \mathbb{R}$ with $a<b$, and suppose $f:(a, b) \rightarrow \mathbb{R}$ is differentiable on (a, b) with $f^{\prime}(x)>0$ for all $x \in(a, b)$. Prove that f is strictly increasing on (a, b); that is, for $a<c<d<b$, we have $f(c)<f(d)$.

K8. Suppose $a, b \in \mathbb{R}$ with $a<b$. Suppose f, f^{\prime}, and $f^{\prime \prime}$ exist on (a, b), Prove that if f has a local maximum at $c \in(a, b)$ (that is, for some $\epsilon>0$, we have $f(x) \leq f(c)$ for all $x \in(c-\epsilon, c+\epsilon)$), then $f^{\prime \prime}(c) \leq 0$.

K9. Suppose $a, b, c \in \mathbb{R}$ with $a<b<c$. Suppose f is continuous on the interval (a, c) and differentiable on $(a, b) \cup(b, c)$. Suppose $\lim _{x \rightarrow b} f^{\prime}(x)$ exists. Prove that f is differentiable at b and $f^{\prime}(b)=\lim _{x \rightarrow b} f^{\prime}(x)$.

K10. Give an example of a function $f:[-1,1] \rightarrow \mathbb{R}$ such that f is continuous on $[-1,1]$, f is differentiable on $(-1,1)$, and $f^{\prime}(0)>0$, but there is no interval around 0 on which f is nondecreasing.

L) sequences of functions

L1. Define $f_{n}:(0,1) \rightarrow \mathbb{R}$ by $f_{n}(x)=\frac{n x}{1+n x^{2}}$ for $n \in \mathbb{N}$. Prove that $\lim _{x \rightarrow 0^{+}} \lim _{n \rightarrow \infty} f_{n}(x)=$ $+\infty$ and $\lim _{n \rightarrow \infty} \lim _{x \rightarrow 0^{+}} f_{n}(x)=0$.

L2. Give an example of a sequence of continuous functions $\left(f_{n}\right)$ defined on $[0,1]$ which are uniformly bounded (i.e., there exists $M \in \mathbb{R}$ such that $\left|f_{n}(x)\right| \leq M$ for all $n \in \mathbb{N}$ and all $x \in[0,1])$ such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ exists for each $x \in[0,1]$, but f is not continuous on $[0,1]$.

L3. Give an example of a sequence of continuous functions f_{n} defined on $[0,1]$ such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ exists for each $x \in[0,1]$, and a sequence of real numbers $\left\{x_{n}\right\}_{n=1}^{\infty}$ with $x_{n} \in[0,1]$ for each $n \in \mathbb{N}$ such that $\lim _{n \rightarrow \infty} x_{n}=x$ exists in \mathbb{R} and $\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)$ exists, but $\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right) \neq f(x)$.

L4. Suppose $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $\left|f_{n}(x)-f_{n}(y)\right| \leq|x-y|$ for all $x, y \in \mathbb{R}$, for each $n \in \mathbb{N}$,
and suppose $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ exists for each $x \in \mathbb{R}$. Prove that $|f(x)-f(y)| \leq|x-y|$ for all $x, y \in \mathbb{R}$.

L5. Give an example of a sequence of functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ such that each f_{n} is differentiable, f is differentiable, and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for each $x \in \mathbb{R}$, but there exists $x_{0} \in \mathbb{R}$ such that $f_{n}^{\prime}\left(x_{0}\right)$ does not converge to $f^{\prime}\left(x_{0}\right) .\left(\frac{1}{n} \sin \left(n e^{x}\right)\right)$

L6. Give an example of a sequence of functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ such that $\lim _{n \rightarrow \infty} \lim _{x \rightarrow \infty} f_{n}(x) \neq$ $\lim _{x \rightarrow \infty} \lim _{n \rightarrow \infty} f_{n}(x)$, where all of the limits exist in \mathbb{R}.

L7. Show that there exists a sequence of functions $\left(f_{n}\right)$ on \mathbb{R} such that each f_{n} is continuous on $\mathbb{R} \backslash E_{n}$, where each E_{n} is a finite set, and $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ exists in \mathbb{R} for every $x \in \mathbb{R}$, but f is discontinuous at every point of \mathbb{R}.

L8. Suppose $f_{n}:(0,1) \rightarrow \mathbb{R}$ is increasing (i.e., $f_{n}(x) \leq f_{n}(y)$ for all $x<y$ with $x, y \in$ $(0,1)$). Suppose $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)<\infty$ for every $x \in(0,1)$. Prove that $f(x) \leq f(y)$ for all $x<y$ with $x, y \in(0,1)$. Give an example where each f_{n} is strictly increasing (i.e., $f_{n}(x)<f_{n}(y)$ for all $x, y \in(0,1)$ with $\left.x<y\right)$, but f is not strictly increasing.

L9. Find a sequence of continuous functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ such that $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ exists (in \mathbb{R}) for each $x \in[0,1]$, and such that f is unbounded on $[0,1]$.

L10. Give an example of a sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ such that for each $n \in \mathbb{N}$, f_{n} is continuous and $\int_{0}^{1} f_{n}(x) d x=1$, but $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for each $x \in[0,1]$.

M) uniform convergence

M1. For $n \in \mathbb{N}$, let $f_{n}(x)=\sin \left(\frac{x}{n}\right)$. Does the sequence $\left(f_{n}\right)$ converge uniformly on $[0,1]$? Does $\left(f_{n}\right)$ converge uniformly on $[0, \infty)$? Prove your answers.

M2. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. For $n \in \mathbb{N}$, define $f_{n}(x)=f\left(x+\frac{1}{\sqrt{n}}\right)$.
(i) Prove that if f is uniformly continuous on \mathbb{R}, then f_{n} converges uniformly to f on \mathbb{R}.
(ii) Give an example of a continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ such that f_{n} does not converge uniformly to f. Prove your conclusion.

M3. Suppose $A, B \subseteq \mathbb{R}$, and $\left(f_{n}\right)$ is a sequence of functions with $f_{n}: A \cup B \rightarrow \mathbb{R}$ such that f_{n} converges uniformly on A to some function f, and f_{n} converges uniformly on B to f. Prove that f_{n} converges uniformly to f on $A \cup B$.

M4. Suppose $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of bounded functions on \mathbb{R} which converges uniformly to a function f on \mathbb{R}. Prove that there exists $M<\infty$ such that $|f(x)| \leq M$ and $\left|f_{n}(x)\right| \leq M$ for all $x \in \mathbb{R}$ and all $n \in \mathbb{N}$ (where M is independent of x and n).

M5. Suppose $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of functions (with $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ for each $n \in \mathbb{N}$) which converges uniformly to a function f on \mathbb{R}. If each f_{n} is continuous at some point $c \in \mathbb{R}$, prove that f is continuous at c.

M6. Suppose $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of functions (with $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ for each $n \in \mathbb{N}$) which
converges uniformly to a function f on \mathbb{R}. If each f_{n} is uniformly continuous on \mathbb{R}, prove that f is uniformly continuous on \mathbb{R}.

M7. Suppose $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of continuous functions (with $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ for each $n \in \mathbb{N}$) which converges uniformly to a function f on \mathbb{R}. Suppose $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a convergent sequence of real numbers and let $x=\lim _{n \rightarrow \infty} x_{n} \in \mathbb{R}$. Prove that $\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(x)$.

M8. Suppose $\left(f_{n}\right)$ is sequence of functions, all defined on the same non-empty subset S of \mathbb{R}. Prove that $\left(f_{n}\right)$ is uniformly Cauchy on S if and only if $\left(f_{n}\right)$ converges uniformly on S. (The sequence $\left(f_{n}\right)$ is said to be uniformly Cauchy on S if, for each $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $\left|f_{j}(x)-f_{k}(x)\right|<\epsilon$ for all $j, k>N$ and all $x \in S$. Note that N is independent of x.)

M9. Suppose that for each $j \in \mathbb{N}$, $f_{j}:[0,1] \rightarrow \mathbb{R}$ satisfies $\left|f_{j}(x)-f_{j}(y)\right| \leq M|x-y|$, for all $x, y \in[0,1]$, with M a constant (independent of x, y, and j). Suppose $\lim _{j \rightarrow \infty} f_{j}(x)$ exists (as a real number) for all $x \in[0,1]$, and let $f(x)=\lim _{j \rightarrow \infty} f_{j}(x)$. Prove that f_{j} converges to f uniformly on $[0,1]$.

M10. Suppose that for each $j \in \mathbb{N}, f_{j}:[0,1] \rightarrow \mathbb{R}$ is continuous, with $f_{j}(x) \leq f_{j+1}(x)$ for each $x \in[0,1]$ and $j \in \mathbb{N}$. Suppose $\lim _{j \rightarrow \infty} f_{j}(x)$ exists for all $x \in[0,1]$, and $f(x)=$ $\lim _{j \rightarrow \infty} f_{j}(x)$ is continuous. Prove that f_{j} converges to f uniformly on $[0,1]$.

N) Riemann integration

N1. Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x)=0$ for $0 \leq x \leq 1 / 2$ and $f(x)=1$ for $1 / 2<x \leq 1$. Let $P_{n}=\left\{0, \frac{1}{n}, \frac{2}{n} \cdot \cdots, 1\right\}$ be the regular partition of size $1 / n$ for $[0,1]$. Compute $U\left(f, P_{n}\right)$ and $L\left(f, P_{n}\right)$, the upper and lower Riemann sums for f on P_{n}. Deduce that f is Riemann integrable on $[0,1]$.

N2. Compute $U\left(f, P_{n}\right)$ for $f(x)=x$, where P_{n} is the uniform grid in N1. Take the limit to obtain $\int_{0}^{1} x d x$. You may use the formula $\sum_{k=1}^{m} k=\frac{m(m+1)}{2}$.

N3. Suppose $a, b \in \mathbb{R}$ with $a<b$. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is increasing: if $x, y \in[a, b]$ and $x<y$ then $f(x) \leq f(y)$. Prove that f is Riemann integrable on $[a, b]$.

N 4 . For $n \in \mathbb{N}$, let $s_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln (n+1)$.
(i) Prove that $s_{n} \leq 1-\frac{1}{n+1}$ for all $n \in \mathbb{N}$.
(ii) Prove that $s_{n} \leq s_{n+1}$ for all $n \in \mathbb{N}$.

N5. Show that there exists a sequence of Riemann integrable functions $\left(f_{n}\right)$ on $[0,1]$ such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ exists in \mathbb{R} for each $x \in[0,1]$ but f is not Riemann integrable on $[0,1]$.

N6. Suppose $f_{n}:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$, for each $n \in \mathbb{N}$, where $a, b \in \mathbb{R}$ with $a<b$. Suppose f_{n} converges uniformly to some function $f: a, b \rightarrow \mathbb{R}$ on $[a, b]$. Prove that f is Riemann integrable on $[a, b]$.

N7. Suppose $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of Riemann integrable functions on an interval $[a, b]$ (here $a, b \in \mathbb{R}$ with $a<b$) such that f_{n} converges uniformly to a function f on $[a, b]$. Prove
that $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x$. You can assume the result (see N6) that f is Riemann integrable on $[a, b]$.

N8. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on \mathbb{R} and satisfies $f^{\prime}(x)=\cos (1+x+f(x))$ for all $x \in \mathbb{R}$. Prove that $|f(x)-f(y)| \leq|x-y|$ for all $x, y \in \mathbb{R}$.

N9. Suppose $f:[0,1] \rightarrow \mathbb{R}$ is Riemann integrable (in particular, f is bounded). Define $g:[0,1] \rightarrow \mathbb{R}$ by $g(x)=\int_{0}^{x} f(t) d t$.
(i) Give an example of an f as stated, such that g is not differentiable at $x=1 / 2$.
(ii) Prove that there exists an $M \in[0, \infty)$ such that $|g(b)-g(a)| \leq M|b-a|$, for all $a, b \in[0,1]$. Here M depends on f but not on a or b.

N10. Suppose $\left(f_{n}\right)$ is a sequence of functions which are differentiable on $(-1,1)$ such that f_{n} converges uniformly to a function f on $(-1,1)$. Suppose also that f_{n}^{\prime} converges uniformly on $(-1,1)$ to a function g. Prove that f is differentiable on $(-1,1)$ and $f^{\prime}=g$.

