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Analysis Diagnostic Exam Sample Exercises

A) logic, proofs, induction

A1. Let p and q be statements (i.e., either true or false). Prove that p =⇒ q is logically
equivalent to ∼ (p∧ ∼ q). Here ∼ denotes the negation of a statement, p∧q is the statement
that p and q are true, and “logically equivalent” means that one is true if and only if the
other is true.

A2. Let p and q be statements. Prove that p =⇒ q is logically equivalent (defined in A1)
to ∼ q =⇒∼ p, where ∼ q is the negation of q and ∼ p is the negation of p.

A3. Let p, q, and r be statements. Prove that p =⇒ (q ∨ r) holds if and only if (p∧ ∼
q) =⇒ r. Here ∼ and ∧ are as in A1, and q ∨ r means that q is true or r is true (or both).

A4. Let p, q, and r be statements. Prove that p ∨ q =⇒ r holds if and only if (p =⇒
r) ∧ (q =⇒ r) holds. Here ∨ and ∧ are as in A1 and A3.

A5. Prove that there is no rational number r such that r2 = 2.

A6. Prove that there is no rational number r such that r2 = 3.

A7. Prove that there is no rational number r such that r3 = 2.

A8. Prove that
∑n

k=1(2k − 1) = n2, for each n ∈ N.

A9. Prove that for any n ∈ N,

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6
.

A10. Suppose n ∈ N and x1, x2, . . . , xn are real numbers. Prove that

|x1 + x2 + . . .+ xn| ≤ |x1|+ |x2|+ . . .+ |xn|.

B) sets, functions

B1. LetX be a set and letA andB be subsets ofX. DefineAc = X\A = {x ∈ X : x 6∈ A}
and similarly for Bc. Prove that A ⊆ B if and only if Bc ⊆ Ac.

B2. Suppose X is a set, A is a subset of X, and Bλ is a subset of X, for each λ belonging to
some index set Λ. Prove that A∩(∪λ∈ΛBλ) = ∪λ∈Λ(A∩Bλ) and A∪(∩λ∈ΛBλ) = ∩λ∈Λ(A∪Bλ).

B3. Let A and B be sets. Prove that A ∩ B = A \ (A \ B), where in general C \ D =
{c ∈ C : c 6∈ D}.

B4. Let A and B be sets. Prove that (A \B) ∪ (B \ A) = (A ∪B) \ (A ∩B).

B5. Let f : X → Y be a function. Let Λ be a set, and for each λ ∈ Λ, assume Aλ is a
subset of X. Prove that f(∪λ∈ΛAλ) = ∪λ∈Λf(Aλ), and f(∩λ∈ΛAλ) ⊆ ∩λ∈Λf(Aλ). Give an
example (you can choose X, Y, f,Λ and the sets Aλ) such that f(∩λ∈ΛAλ) 6= ∩λ∈Λf(Aλ).
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B6. Let f : X → Y be a function. Let Λ be a set, and for each λ ∈ Λ, assume Bλ is
a subset of Y . Prove that f−1(∪λ∈ΛBλ) = ∪λ∈Λf

−1(Bλ), and f−1(∩λ∈ΛBλ) = ∩λ∈Λf
−1(Bλ).

Here f−1(B) = {x ∈ X : f(x) ∈ B} is the inverse image of B; we do not assume that f is
1− 1 or onto.

B7. Define f : N→ Z by {
f(n) = n

2
if n is even

f(n) = −n+1
2

if n is odd.

Prove that f is a bijection.

B8. For x ∈ R, prove that
x

1 + |x|
∈ (−1, 1). Define f : R → (−1, 1) by f(x) =

x

1 + |x|
.

Prove that f is a bijection.

B9. Suppose f : X → Y and g : Y → Z are functions. Let g ◦ f : X → Z be the
composition of f and g, defined by g ◦ f(x) = g(f(x)).

(i) Assume f and g are 1− 1 (injective). Prove that g ◦ f is 1− 1.

(ii) Assume f and g are onto (surjective). Prove that g ◦ f is onto.

B10. Suppose X and Y are sets, f : X → Y is a function, and A ⊆ X.

(i) Prove that A ⊆ f−1(f(A)).

(ii) Prove that if f is 1− 1, then f−1(f(A)) = A.

(iii) Give an example of X, Y, f , and A such that f−1(f(A)) 6= A.

C) properties of R, completeness

C1. Let A and B be subsets of R which are bounded above. Prove that A∪B is bounded
above and sup(A ∪B) = max(supA, supB).

C2. Let A ⊆ R be non-empty and bounded above. Let s ∈ R. Prove that s = supA if
and only s satisfies both (i) s is an upper bound for A and (ii) given any ε > 0, there exists
a ∈ A such that a > s− ε.

C3. Let A ⊆ R be non-empty and bounded above, and let t ∈ R. Define the translate
A+ t of A by

A+ t = {a+ t : a ∈ A}.

Prove that A+ t is bounded above, and sup(A+ t) = t+ supA.

C4. Let A ⊆ R be non-empty and bounded above, and let −A = {−x : x ∈ A}. Prove
that −A is bounded below and that inf(−A) = − supA.

C5. Let A ⊆ R be nonempty and bounded above. Let r ∈ R with r > 0. Define

rA = {rx : x ∈ A}.

Prove that rA is bounded above and sup(rA) = r supA.
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C6. Let A and B be nonempty, bounded above subsets of R. Define

A+B = {a+ b : a ∈ A, b ∈ B}.

Prove that A+B is bounded above and sup(A+B) = supA+ supB.

C7. Let A ⊆ (0,∞) be a nonempty bounded set, and let B =

{
1

x
: x ∈ A

}
. Prove that

inf B =
1

supA
.

C8. Suppose that an, bn ∈ R with an ≤ bn, for each n ∈ N. Let In = {x ∈ R : an ≤ x ≤
bn}. Suppose In+1 ⊆ In, for each n. Prove that ∩∞n=1In 6= ∅.

C9. Use the completeness property of R (the existence of the supremum of any non-empty
set which is bounded above) to prove that there exists x ∈ R satsifying x2 = 2.

C10. Use the completeness property of R to prove that there exists x ∈ R satsifying
x3 = 2.

D) sequences, limits of sequences

D1. Prove the following directly from the ε,N definition of the limit of a sequence:

lim
n→∞

3n+ 2

5n− 12
=

3

5
.

D2. Prove the following directly from the ε,N definition of the limit of a sequence:

lim
n→∞

n2

2n2 − 25
=

1

2
.

D3. Suppose (xn) is a sequence of real numbers, ` ∈ R, limn→∞ xn = `, and c ∈ R. Prove
that limn→∞(cxn) = c`.

D4. Suppose (xn) is a convergent sequence of real numbers. Prove that (xn) is bounded.

D5. (Uniqueness of limits) Suppose (xn) is a sequence of real numbers, `1, `2 ∈ R,
limn→∞ xn = `1, and limn→∞ xn = `2. Prove that `1 = `2.

D6. Suppose (xn) and (yn) are sequences of real numbers, `1, `2 ∈ R, limn→∞ xn = `1,
and limn→∞ yn = `2. Prove that

(i) limn→∞(xn + yn) = `1 + `2,

and

(ii) limn→∞(xnyn) = `1`2.

D7. Let (xn)∞n=1 be a sequence of real numbers which is increasing (i.e., xn ≤ xn+1 for all
n ∈ N) and bounded above. Prove that (xn) converges to sup{xn}∞n=1.
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D8. Suppose (xn) is a sequence of real numbers, ` ∈ R, and limn→∞ xn = `. Prove that
limn→∞ |xn| = |`|.

D9. Suppose f : R→ R satisfies |f(x)− f(y)| ≤ 1
2
|x− y| for all x, y ∈ R, and f(0) = 0.

Let x0 ∈ R be arbitrary. Define x1 = f(x0), x2 = f(x1), etc., so that xn = f(xn−1) for all
n ∈ N. Prove that limn→∞ xn = 0.

D10. Let x1 = 2. For n ≥ 2, define xn recursively by xn+1 =
1

2

(
xn +

2

xn

)
.

(i) Prove that xn ≥
√

2 for all n ∈ N.

(ii) Prove that (xn) converges and find limn→∞ xn.

E) subsequences, Cauchy sequences

E1. Let (xn) and (yn) be bounded sequences of real numbers. Prove that lim sup(xn +
yn) ≤ lim supxn + lim sup yn. Give an example of bounded sequences (xn) and (yn) of real
numbers with lim sup(xn + yn) 6= lim supxn + lim sup yn. Here the lim sup of any bounded
sequence (an) is defined by lim sup an = infk≥1 supm≥k am.

E2. Let (xn) and (yn) be sequences of real numbers such that (yn) is bounded and (xn)
converges to some x ∈ R. Prove that lim sup(xn + yn) = x+ lim sup yn.

E3. Let (xn) be a bounded sequence of real numbers. Suppose (xn) has a subsequence
(xnk

)∞k=1 which is convergent. Prove that

lim inf xn ≤ lim
k→∞

xnk
≤ lim supxn.

Here lim supxn is defined as in E1, and lim inf xn = supk≥1 infm≥k xm.

E4. Let (xn) be a bounded sequence of real numbers. Prove that there is a subsequence
of xn which converges to lim supxn.

E5. Let (xn) be a bounded sequence of real numbers. Prove that (xn) converges if and
only if lim inf xn = lim supxn.

E6. Prove that any convergent sequence of real numbers in Cauchy.

E7. Prove that any Cauchy sequence of real numbers is bounded (without assuming the
theorem that a Cauchy sequence of real numbers converges).

E8. Prove that any Cauchy sequence of real numbers is convergent (you can use E4 and
E7).

E9. Let (xn) be a bounded sequence of real numbers. Let

S =
{
x ∈ R : there exists a subsequence {xnk

}∞k=1 of (xn) such that lim
k→∞

xnk
= x

}
;

that is, S is the set of subsequential limit points of (xn). Prove that S is a closed set; that
is, if yn ∈ S for all n ∈ N and limn→∞ yn = y, then y ∈ S.
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E10. Let (xn) be a sequence of real numbers, and let ` ∈ R. Prove that limn→∞ xn = `
if and only if every subsequence of (xn) has a subsequence converging to `.

F) open and closed sets

F1. Using only the definition of open sets (i.e., O ⊆ R is open if, for each x ∈ O, there
exists ε > 0, where ε may depend on x, such that (x− ε, x+ ε) ⊆ O), prove that

(i) an arbitrary union of open sets is open,
and
(ii) a finite intersection of open sets is open.

F2. Using only the definition of closed sets (i.e., E ⊆ R is closed if, for each sequence
(xn) with xn ∈ E for all n ∈ N, which converges to some x ∈ R, we have x ∈ E), prove that

(i) an arbitrary intersection of closed sets is closed,
and
(ii) a finite union of closed sets is closed.

F3. Using only the definition of open sets (see F1), prove that the interval (−1, 1) is
open.

F4. Give an example of open sets {On}∞n=1 in R such that ∩∞n=1On is not open. Prove
your answer.

F5. Give an example of closed sets {En}∞n=1 in R such that ∪∞n=1En is not closed. Prove
your answer.

F6. Using only the definition of open and closed sets (see F1 and F2 for the definitions),
prove that a subset O of R is open if and only if E = R \O is closed.

F7. For E ⊆ R, define E, the closure of E, by

E = {x ∈ R : there exists a sequence (xn) ⊆ E such that lim
n→∞

xn = x}.

(i) Prove that E ⊆ E and E is closed.

(ii) Suppose F ⊆ R, F is closed, and E ⊆ F . Prove that E ⊆ F . Deduce the characteri-
zation

E = ∩{F : F ⊆ R, F is closed, and E ⊆ F}.

F8. Suppose A,B ⊆ R. Prove that A ∪B = A ∪B.

F9. Suppose that Eλ is a subset of R for every λ ∈ Λ, where Λ is an arbitrary index set.

(i) Prove that ∪λ∈ΛEλ ⊆ ∪λ∈ΛEλ.

(ii) Give an example of sets En ⊆ R, for n ∈ N, such that ∪∞n=1En 6= ∪∞n=1En.

F10. Suppose A ⊆ R and A 6= ∅. For x ∈ R, let d(x) = inf{|x − a| : a ∈ A} (d is the
distance from the point x to the set A). Prove that x ∈ A if and only if d(x) = 0, where A
is the closure of A.
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G) compact sets

G1. Give an example of an open cover of [0, 1) which has no finite subcover. Prove your
answer.

G2. Let A =

{
1

n
: n ∈ N

}
. Give an example of an open cover of A which has no finite

subcover. Prove your answer.

G3. Let K =

{
1

n
: n ∈ N

}
∪ {0}. Prove directly, without using the Heine-Borel or

Bolzano-Weierstrass theorems, that K is compact.

G4. Using only the open cover definition of compactness (and not the Heine-Borel or
Bolzano-Weierstrass theorems), prove that the union of two compact subsets of R is compact.

G5. Using only the open cover definition of compactness (and not the Heine-Borel or
Bolzano-Weierstrass theorems), prove that a compact subset of R is closed.

G6. Using only the open cover definition of compactness (and not the Heine-Borel or
Bolzano-Weierstrass theorems), prove that a compact subset of R is bounded.

G7. Using only the open cover definition of compactness (and not the Heine-Borel or
Bolzano-Weierstrass theorems), prove that a closed subset of a compact set is compact.

G8. Suppose K ⊆ R is compact and non-empty. Show that supK ∈ K and inf K ∈ K.

G9. Suppose Kj ⊆ R is compact for each j ∈ N and ∩nj=1Kj 6= ∅ for each n ∈ N.
Prove that ∩∞j=1Kj 6= ∅. Give an example of closed sets Ej ⊆ R such that ∩nj=1Ej 6= ∅ and
∩∞j=1Ej = ∅.

G10. Suppose A,B ⊆ R are non-empty, with A compact and B closed. If A ∩ B = ∅,
prove that there exists ε > 0 such that |a − b| > ε for all A ∈ A and b ∈ B. (Here ε is
independent of a, b.) Give an example showing that the conclusion fails if A is only assumed
to be closed.

H) limits of functions

H1. Prove that lim
x→0

sin

(
1

x

)
does not exist. Give an example of a sequence of points

(xn) with xn > 0 for all n ∈ N, such that limn→∞ xn = 0 and lim
n→∞

sin

(
1

xn

)
= 0. How is the

existence of that sequence (xn) consistent with the non-existence of lim
x→0

sin

(
1

x

)
?

H2. Prove (directly from the ε− δ definition of limits) that limx→3 x
2 = 9.

H3. Prove (directly from the ε− δ definition of limits) that lim
x→0

1

x+ 3
=

1

3
.

H4. Suppose f : R → R and g : R → R are functions such that limx→c f(x) and
limx→c g(x) exist in R, for some c ∈ R. Prove that limx→c(f + g)(x) exists and limx→c(f +
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g)(x) = limx→c f(x) + limx→c g(x).

H5. Suppose f : R → R and g : R → R are functions such that limx→c f(x) and
limx→c g(x) exist in R, for some c ∈ R. Prove that limx→c(fg)(x) exists and limx→c(fg)(x) =
(limx→c f(x)) · (limx→c g(x)).

H6. Suppose f : (−1, 1)→ R and g : (−1, 1)→ R are functions such that limx→0 f(x) = 0
and g is bounded. Prove that limx→0(fg)(x) = 0.

H7. Suppose a, b ∈ R with a < b, c ∈ (a, b), and f : (a, b)→ R is a function. Prove that
limx→c f(x) = L if and only if: for all sequences {xn}∞n=1 with xn ∈ (a, b) \ {c} for all n ∈ N
and satisfying limn→∞ xn = c, we have limn→∞ f(xn) = L.

H8. Suppose f, g, h : (−1, 1) → R satisfy f(x) ≤ g(x) ≤ h(x) for all x ∈ (−1, 1),
limx→0 f(x) = a and limx→0 h(x) = a, for some a ∈ R. Prove that limx→0 g(x) = a.

H9. Suppose f : R→ R is a function, and f(x) ≥ 0 for all x ∈ R. Suppose limx→c f(x) =
0, for some c ∈ R. Prove that limx→c

√
f(x) = 0.

H10. Suppose O ⊆ R is a non-empty open set, and f : O → R is a function. Suppose
c ∈ O and limx→c f(x) exists, with limx→c f(x) > 0. Suppose also that f(c) > 0. Prove that
there exist `, r > 0 such that such that f(x) > ` for all x ∈ (c− r, c+ r).

I) continuity of functions

I1. Suppose f : R → R is continuous at 0. Prove that there exists ε > 0 such that f is
bounded on (−ε, ε).

I2. Prove directly from the (ε− δ) definition of continuity that f(x) =
√
x is continuous

on [0,∞).

I3. Suppose f : E → R is a function, where E ⊆ R. Let x0 ∈ E. Prove that f is
continuous at x0 if and only if limn→∞ f(xn) = f(x0) for all sequences (xn) contained in E
such that limn→∞ xn = x0.

I4. Suppose f : R → R is a function. Prove that f is continuous on R if and only
if f−1(O) is open for every open set O ⊆ R. Give an example of a continuous function
f : R→ R and a non-empty open set O ⊆ R such that f(O) is not open in R.

I5. Suppose f : R → R is a function. Prove that f is continuous on R if and only if
f−1(E) is closed for every closed set E ⊆ R. Give an example of a continuous function
f : R→ R and a non-empty closed set E ⊆ R such that f(E) is not closed in R.

I6. Suppose K ⊆ R is compact and f : K → R is continuous. Prove that f attains a
maximum on K; that is, there exists a point x0 ∈ K such that f(x) ≤ f(x0) for all x ∈ K.
You can assume the Bolzano-Weierstass theorem.

I7. Suppose f : R → R is continuous and K ⊆ R is compact. Prove that f(K) is
compact.

I8. Suppose A ⊆ R, with A 6= ∅.
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(i) Suppose f : R→ R is continuous. Prove that f(A) ⊆ f(A).

(ii) Give an example of a nonempty set A and a function f : R → R such that f(A) 6⊆
f(A).

(iii) Give an example of a continuous f : R → R and a nonempty set A ⊆ R such that
f(A) 6= f(A).

I9. Suppose f : R→ R is a function such that f 3(x) is continuous on R. Prove that f is
continuous on R. Give an example of f : R → R such that f 2(x) is continuous on R but f
is not continuous on R.

I10. Give an example of a continuous function on (0, 1) and a Cauchy sequence (xn) in
(0, 1) such that (f(xn)) is not a Cauchy sequence in R.

J) uniform continuity

J1. Is f(x) = x2 uniformly continuous on (0, 1)? Prove your answer.

J2. Is f(x) = x2 uniformly continuous on (0,∞)? Prove your answer.

J3. Suppose f : (0, 1)→ R is uniformly continuous. Prove that f is bounded.

J4. Is f(x) = sin(1/x) uniformly continuous on (0, 1)? Prove your answer.

J5. Suppose f : R → R and g : R → R are uniformly continuous. Prove that f + g is
uniformly continuous on R.

J6. Give an example of functions f : R → R and g : R → R which are uniformly
continuous, but fg is not uniformly continuous on R. Prove that your answer has the
required properties.

J7. Suppose f : R → R and g : R → R are uniformly continuous. Prove that g ◦ f is
uniformly continuous on R.

J8. Suppose f : (0, 1) → R is uniformly continuous. Prove that there exists a function
g : [0, 1] → R such that g is continuous and g(x) = f(x) for all x ∈ (0, 1) (i.e., g is an
extension of f).

J9. Let A ⊆ R with A 6= ∅. Define d : R → [0,∞) by d(x) = inf{|x − y| : y ∈ A} (d is
the distance to the set A). Prove that d is uniformly continuous on R.

J10. Suppose f : (0, 1) → R is uniformly continuous on (0, 1) and (xn) is a Cauchy
sequence in (0, 1). Prove that (f(xn)) is a Cauchy sequence in R.

K) the derivative

K1. Define f : R → R by f(x) =

{
x2 sin

(
1
x

)
if x 6= 0

0 if x = 0 .
Determine whether f is

differentiable at 0. If f is differentiable at 0, determine whether f ′ is continuous at 0. Prove
your answers.
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K2. Define f : R → R by f(x) =

{
x3 sin

(
1
x

)
if x 6= 0

0 if x = 0 .
Determine whether f is

differentiable at 0. If f is differentiable at 0, determine whether f ′ is continuous at 0. Prove
your answers.

K3. Suppose f : R→ R is differentiable at some point c ∈ R. Prove that f is continuous
at c.

K4. Give and example of a function f : R→ R such that (i) f is differentiable at 0 and
(ii) f is not continuous at all x 6= 0.

K5. Suppose a, b ∈ R with a < b, and suppose f : (a, b) → R is differentiable on (a, b).
Suppose f has a local minimum at a point c ∈ (a, b) (that is, for some ε > 0, we have
f(x) ≥ f(c) for all x ∈ (c− ε, c+ ε)). Prove that f ′(c) = 0.

K6. Suppose a, b ∈ R with a < b. Suppose f : [a, b] → R is continuous, and f is
differentiable on (a, b). Prove that if f(a) = f(b) = 0, then there exists some c ∈ (a, b) such
that f ′(c) = 0.

K7. Suppose a, b ∈ R with a < b, and suppose f : (a, b) → R is differentiable on (a, b)
with f ′(x) > 0 for all x ∈ (a, b). Prove that f is strictly increasing on (a, b); that is, for
a < c < d < b, we have f(c) < f(d).

K8. Suppose a, b ∈ R with a < b. Suppose f, f ′, and f ′′ exist on (a, b), Prove that if
f has a local maximum at c ∈ (a, b) (that is, for some ε > 0, we have f(x) ≤ f(c) for all
x ∈ (c− ε, c+ ε)), then f ′′(c) ≤ 0.

K9. Suppose a, b, c ∈ R with a < b < c. Suppose f is continuous on the interval (a, c)
and differentiable on (a, b)∪(b, c). Suppose limx→b f

′(x) exists. Prove that f is differentiable
at b and f ′(b) = limx→b f

′(x).

K10. Give an example of a function f : [−1, 1]→ R such that f is continuous on [−1, 1],
f is differentiable on (−1, 1), and f ′(0) > 0, but there is no interval around 0 on which f is
nondecreasing.

L) sequences of functions

L1. Define fn : (0, 1)→ R by fn(x) = nx
1+nx2

for n ∈ N. Prove that limx→0+ limn→∞ fn(x) =
+∞ and limn→∞ limx→0+ fn(x) = 0.

L2. Give an example of a sequence of continuous functions (fn) defined on [0, 1] which
are uniformly bounded (i.e., there exists M ∈ R such that |fn(x)| ≤M for all n ∈ N and all
x ∈ [0, 1]) such that limn→∞ fn(x) = f(x) exists for each x ∈ [0, 1], but f is not continuous
on [0, 1].

L3. Give an example of a sequence of continuous functions fn defined on [0, 1] such that
limn→∞ fn(x) = f(x) exists for each x ∈ [0, 1], and a sequence of real numbers {xn}∞n=1 with
xn ∈ [0, 1] for each n ∈ N such that limn→∞ xn = x exists in R and limn→∞ fn(xn) exists,
but limn→∞ fn(xn) 6= f(x).

L4. Suppose fn : R→ R satisfies |fn(x)−fn(y)| ≤ |x−y| for all x, y ∈ R, for each n ∈ N,
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and suppose f(x) = limn→∞ fn(x) exists for each x ∈ R. Prove that |f(x)− f(y)| ≤ |x− y|
for all x, y ∈ R.

L5. Give an example of a sequence of functions fn : R → R such that each fn is
differentiable, f is differentiable, and limn→∞ fn(x) = f(x) for each x ∈ R, but there exists
x0 ∈ R such that f ′n(x0) does not converge to f ′(x0). ( 1

n
sin(nex))

L6. Give an example of a sequence of functions fn : R→ R such that limn→∞ limx→∞ fn(x) 6=
limx→∞ limn→∞ fn(x), where all of the limits exist in R.

L7. Show that there exists a sequence of functions (fn) on R such that each fn is
continuous on R \En, where each En is a finite set, and f(x) = limn→∞ fn(x) exists in R for
every x ∈ R, but f is discontinuous at every point of R.

L8. Suppose fn : (0, 1) → R is increasing (i.e., fn(x) ≤ fn(y) for all x < y with x, y ∈
(0, 1)). Suppose f(x) = limn→∞ fn(x) < ∞ for every x ∈ (0, 1). Prove that f(x) ≤ f(y)
for all x < y with x, y ∈ (0, 1). Give an example where each fn is strictly increasing (i.e.,
fn(x) < fn(y) for all x, y ∈ (0, 1) with x < y), but f is not strictly increasing.

L9. Find a sequence of continuous functions fn : [0, 1]→ R such that f(x) = limn→∞ fn(x)
exists (in R) for each x ∈ [0, 1], and such that f is unbounded on [0, 1].

L10. Give an example of a sequence of functions fn : [0, 1]→ R such that for each n ∈ N,

fn is continuous and
∫ 1

0
fn(x) dx = 1, but limn→∞ fn(x) = 0 for each x ∈ [0, 1].

M) uniform convergence

M1. For n ∈ N, let fn(x) = sin
(x
n

)
. Does the sequence (fn) converge uniformly on

[0, 1]? Does (fn) converge uniformly on [0,∞)? Prove your answers.

M2. Suppose f : R→ R is continuous. For n ∈ N, define fn(x) = f

(
x+

1√
n

)
.

(i) Prove that if f is uniformly continuous on R, then fn converges uniformly to f on R.

(ii) Give an example of a continuous f : R→ R such that fn does not converge uniformly
to f . Prove your conclusion.

M3. Suppose A,B ⊆ R, and (fn) is a sequence of functions with fn : A ∪ B → R such
that fn converges uniformly on A to some function f , and fn converges uniformly on B to
f . Prove that fn converges uniformly to f on A ∪B.

M4. Suppose {fn}∞n=1 is a sequence of bounded functions on R which converges uniformly
to a function f on R. Prove that there exists M <∞ such that |f(x)| ≤M and |fn(x)| ≤M
for all x ∈ R and all n ∈ N (where M is independent of x and n).

M5. Suppose {fn}∞n=1 is a sequence of functions (with fn : R→ R for each n ∈ N) which
converges uniformly to a function f on R. If each fn is continuous at some point c ∈ R,
prove that f is continuous at c.

M6. Suppose {fn}∞n=1 is a sequence of functions (with fn : R→ R for each n ∈ N) which
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converges uniformly to a function f on R. If each fn is uniformly continuous on R, prove
that f is uniformly continuous on R.

M7. Suppose {fn}∞n=1 is a sequence of continuous functions (with fn : R → R for each
n ∈ N) which converges uniformly to a function f on R. Suppose {xn}∞n=1 is a convergent
sequence of real numbers and let x = limn→∞ xn ∈ R. Prove that limn→∞ fn(xn) = f(x).

M8. Suppose (fn) is sequence of functions, all defined on the same non-empty subset S
of R. Prove that (fn) is uniformly Cauchy on S if and only if (fn) converges uniformly on S.
(The sequence (fn) is said to be uniformly Cauchy on S if, for each ε > 0, there exists N ∈ N
such that |fj(x)− fk(x)| < ε for all j, k > N and all x ∈ S . Note that N is independent of
x.)

M9. Suppose that for each j ∈ N, fj : [0, 1]→ R satisfies |fj(x)− fj(y)| ≤M |x− y|, for
all x, y ∈ [0, 1], with M a constant (independent of x, y, and j). Suppose limj→∞ fj(x) exists
(as a real number) for all x ∈ [0, 1], and let f(x) = limj→∞ fj(x). Prove that fj converges to
f uniformly on [0, 1].

M10. Suppose that for each j ∈ N, fj : [0, 1] → R is continuous, with fj(x) ≤ fj+1(x)
for each x ∈ [0, 1] and j ∈ N. Suppose limj→∞ fj(x) exists for all x ∈ [0, 1], and f(x) =
limj→∞ fj(x) is continuous. Prove that fj converges to f uniformly on [0, 1].

N) Riemann integration

N1. Define f : [0, 1] → R by f(x) = 0 for 0 ≤ x ≤ 1/2 and f(x) = 1 for 1/2 < x ≤ 1.
Let Pn = {0, 1

n
, 2
n
. · · · , 1} be the regular partition of size 1/n for [0, 1]. Compute U(f, Pn)

and L(f, Pn), the upper and lower Riemann sums for f on Pn. Deduce that f is Riemann
integrable on [0, 1].

N2. Compute U(f, Pn) for f(x) = x, where Pn is the uniform grid in N1. Take the limit

to obtain
∫ 1

0
x dx. You may use the formula

∑m
k=1 k = m(m+1)

2
.

N3. Suppose a, b ∈ R with a < b. Suppose f : [a, b]→ R is increasing: if x, y ∈ [a, b] and
x < y then f(x) ≤ f(y). Prove that f is Riemann integrable on [a, b].

N4. For n ∈ N, let sn = 1 + 1
2

+ 1
3

+ · · ·+ 1
n
− ln(n+ 1).

(i) Prove that sn ≤ 1− 1
n+1

for all n ∈ N.

(ii) Prove that sn ≤ sn+1 for all n ∈ N.

N5. Show that there exists a sequence of Riemann integrable functions (fn) on [0, 1] such
that limn→∞ fn(x) = f(x) exists in R for each x ∈ [0, 1] but f is not Riemann integrable on
[0, 1].

N6. Suppose fn : [a, b] → R is Riemann integrable on [a, b], for each n ∈ N, where
a, b ∈ R with a < b. Suppose fn converges uniformly to some function f : a, b→ R on [a, b].
Prove that f is Riemann integrable on [a, b].

N7. Suppose {fn}∞n=1 is a sequence of Riemann integrable functions on an interval [a, b]
(here a, b ∈ R with a < b) such that fn converges uniformly to a function f on [a, b]. Prove
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that limn→∞
∫ b
a
fn(x) dx =

∫ b
a
f(x) dx. You can assume the result (see N6) that f is Riemann

integrable on [a, b].

N8. Suppose f : R→ R is differentiable on R and satisfies f ′(x) = cos(1 + x+ f(x)) for
all x ∈ R. Prove that |f(x)− f(y)| ≤ |x− y| for all x, y ∈ R.

N9. Suppose f : [0, 1] → R is Riemann integrable (in particular, f is bounded). Define
g : [0, 1]→ R by g(x) =

∫ x
0
f(t) dt.

(i) Give an example of an f as stated, such that g is not differentiable at x = 1/2.

(ii) Prove that there exists an M ∈ [0,∞) such that |g(b) − g(a)| ≤ M |b − a|, for all
a, b ∈ [0, 1]. Here M depends on f but not on a or b.

N10. Suppose (fn) is a sequence of functions which are differentiable on (−1, 1) such that
fn converges uniformly to a function f on (−1, 1). Suppose also that f ′n converges uniformly
on (−1, 1) to a function g. Prove that f is differentiable on (−1, 1) and f ′ = g.


