




























Numerical Mathematics Preliminary Examination
Wednesday August 11, 2021

I. Numerical Linear Algebra

1. The purpose of this problem is to use the the spectral decomposition theorem to

prove the existence of the SVD. For this reason, you cannot invoke the SVD to

solve it. Let A ∈ Cm×n, with m ≥ n.
(a) Show that both AAH and AHA are Hermitian and positive semi-definite. There-
fore, they admit the decompositions

AAH = USSTUH, AHA = VSTSVH,

where U ∈ Cm×m and V ∈ Cn×n are unitary, and S ∈ Rm×n is diagonal and has
non-negative entries. Notice that this same S must appear in both decompo-
sitions.

(b) From the previous two decompositions, show that

A = USVH.

2. Suppose that A ∈ Cn×n is Hermitian with spectrum σ(A) = {λi}ni=1 ⊂ R and the
associated orthonormal basis of eigenvectors S = {w i}ni=1. Given ε > 0, suppose
that x ∈ Cn! is a unit vector (‖x‖2 = 1) satisfying

0 < ‖x − w k‖2 < ε,

for some k ∈ {1, . . . , n}. Prove that
!!xHAx − λk

!! < 2ρ(A)ε2,

where ρ(A) is the spectral radius of A.
Hint: If you can not prove this result, prove a simpler one.

3. Let A = [ai ,j ] ∈ Cn×n be invertible and b ∈ Cn. Prove that, if A is strictly diagonally
dominant, i.e.,

|ai ,i | >
"

k ∕=i

|ai ,k | , ∀ i = 1, . . . , n,

then for any starting value x0, the classical Jacobi iteration method for approximat-

ing the solution to Ax = b is convergent.

4. Let A ∈ Cm×n and b ∈ Cm, with m > n. Assume that rank(A) = n, and let
A = Q̂R̂ be a reduced QR factorization of A and A = UΣVH be a singular value
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decomposition (SVD) of A. Recall that the Moore-Penrose pseudoinverse of A is
defined by

A† = VΣ†UH,

where Σ† = diag(σ−11 , . . . ,σ
−1
r , 0, . . . , 0) ∈ Rn×m and r ≤ n is the rank of A. Show

that x ∈ Cn is a least squares solution to Ax = b iff R̂x = Q̂Hb iff x = A†b.

II. Numerical Solutions of Nonlinear Equations

5. Suppose that f ∈ C1([a, b];R), and, for some ξ ∈ (a, b), f (ξ) = 0. Assume that
there are positive constants m,M ∈ R, such that 0 < m ≤ f ′(x) ≤ M, for all
x ∈ [a, b]. To approximate the zero ξ, consider the following algorithm: given
x0 ∈ [a, b], compute x1, x2, . . ., via

τ−1(xk+1 − xk) + f (xk) = 0, k = 0, 1, 2, . . .,

where τ ∕= 0 is a parameter to be determined.
(a) Prove that there is one and only one zero in [a, b].

(b) Show that if 0 < τ < 2/M the method converges, provided x0 is sufficiently

close to ξ.

(c) Show that the optimal value of τ is given by τ0 =
2

m+M
and that, in this case,

we have the error estimate:

|ξ − xk | ≤ qk |ξ − x0|, q =
M −m
M +m

.

III. Numerical Solutions of ODEs

6. Consider

u′(t) = f (t, u(t)) , t ≥ 0, u (0) = u0,

where f : [0, T ]×R→ R is continuous in its first variable and Lipschitz continuous
in its second variable.

(a) Prove that the forward Euler method converges.

(b) Prove that the backward Euler method converges.

Clearly indicate the smoothness assumptions you are using to prove convergence.

You may assume the appropriate local truncation error estimates without proof.

7. Show that the BDF3 method

w k+3 − 18
11
w k+2 +

9

11
w k+1 − 2

11
w k =

6

11
sf (tk+3, w

k+3)

satisfies the root condition and is of order 3. Conclude, therefore, that it must be

a convergent method. Use the boundary locus method to prove that BDF3 cannot

be A-stable.
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IV. Numerical Solutions of PDEs

8. A general linear explicit finite difference method for approximating a time-dependent

Cauchy problem can be written in the form

w n+1j =
"

p∈P

apw
n
j+p,

where P is a finite subset of Z and ap are the weights, which depend upon the time
and space step sizes. We say that the method reproduces the constant state if,

whenever w n ≡ 1, we obtain that w n+1 ≡ 1.
(a) Show that if the method reproduces the constant state, then

"

p∈P

ap = 1.

(b) A method is max-norm non-increasing iff ‖w n+1‖L∞h ≤ ‖w
n‖L∞h . A method is

positivity preserving iff whenever w nℓ ≥ 0, for all ℓ ∈ Z, then w n+1ℓ ≥ 0, for all
ℓ ∈ Z. Show that if a method reproduces the constant state and is max-norm
non-increasing, then the method is positivity preserving.

Hint: Suppose that w nℓ ≥ 0 and w nk = ‖w n‖L∞h = α ≥ 0, for some k ∈ Z.
Now define a new variable ηnℓ := w

n
ℓ − α/2. Apply the method to ηn, and use

the fact that −α/2 ≤ ηn+1ℓ ≤ α/2, for all ℓ ∈ Z, to conclude the result.
(c) Show that, if a method reproduces the constant state and is max-norm non-

increasing, then ap ≥ 0 for all p ∈ P .
9. Consider the diffusion problem

ut = uxx , 0 < x < 1, 0 < t ≤ T
u(0, t) = φ0(t), 0 < t ≤ T,
u(1, t) = φ1(t), 0 < t ≤ T,
u(x, 0) = g(x), 0 ≤ x ≤,

where g(0) = φ0(0) and g(1) = φ1(0) for consistency. Define h =
1
m+1
, τ = T

N
,

µ = τ
h2
, xℓ = ℓ · h, tn = n · τ , gℓ = g(xℓ), φni = φi(tn), i = 0, 1. The forward Euler

method for this problem is define as follows:

w n+1ℓ = w nℓ .+ µ
#
w nℓ−1 − 2w nℓ + w nℓ+1

$
, 1 ≤ ℓ ≤ m, 0 ≤ n ≤ N − 1,

with w n0 = φ
n
0, w

n
m+1 = φ

n
1, 0 ≤ n ≤ N, and w 0ℓ = gℓ, 1 ≤ ℓ ≤ m. Suppose u ∈

C4([0, 1]× [0, T ]) and define unℓ = u(xℓ, tn). Define enℓ := unℓ − w nℓ , 0 ≤ ℓ ≤ m + 1,
0 ≤ n ≤ N, en = [en1 , ..., enm]

T , 0 ≤ n ≤ N. Suppose that µ = µ0 ≤ 1
2
. Prove that

max
0≤n≤N

‖en‖∞ ≤ Ch2,

where C > 0 is independent of h and τ . You may assume the appropriate estimate

of the local truncation error with proof.
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NUMERICAL MATHEMATICS PRELIMINARY EXAMINATION:
AUGUST 2020

Instructions

Read each problem carefully. You must show your work to receive credit. If you believe a
problem has a typo, missing conditions, or can be interpreted in several ways, please clearly
indicate so in your work. In this case, fix the problem in a way that it does not become
trivial.

Please stay safe, wear a mask, and be mindful of social distancing.

1. Numerical Linear Algebra

1. The purpose of this problem is to provide a proof of existence of the SVD. For this reason,
you cannot use the SVD to solve it.

Let A ∈ Cm×n with m ≥ n.
a) Show that both AA∗ and A∗A are Hermitian and positive semidefinite. Therefore they

admit the decompositions

AA∗ = UΣΣᵀU∗, A∗A = V ΣᵀΣV ∗,

where U ∈ Cm×m and V ∈ Cn×n are unitary and Σ ∈ Rm×n is diagonal and has
nonnegative entries. Notice that this must be the same matrix in both decompositions.

b) From the previous two decompositions show that A = UΣV ∗. Hint: Show that the
columns of U are eigenvectors of AA∗.

2. Let A ∈ Cn×n. Recall that we say that A is strictly diagonally dominant of dominance
δ > 0 if

|ai,i| ≥ δ +
∑
j 6=i

|ai,j|, i = 1, . . . , n.

Let A be strictly diagonally dominant of dominance δ > 0.
a) Show that A is nonsingular and that

‖A−1‖∞ ≤ δ−1.

b) Show that if we apply Gaussian elimination without pivoting to

Ax = f,

then the procedure reaches completion without encountering any zero pivot elements.
c) Assume, in addition, that A ∈ Rn×n. Show that all the entries of A−1 are nonnegative.

3. Let A ∈ Cm×n with m ≥ n be full rank, and let A = Q̂R̂ be a reduced QR factorization
of A.
a) Show that P = Q̂Q̂∗ is an orthogonal projection onto R(A), the range of A.
b) Let f ∈ Cm. Show that the vector x ∈ Cn is a least squares solution to Ax = f iff

Ax = Pf , where P is the orthogonal projection onto R(A).



4. Let A ∈ Rn×n be an SPD matrix with σ(A) = {λi}ni=1 and 0 < λ1 ≤ . . . ≤ λn. Denote by
Pk the space of polynomials of degree at most k ∈ N, that take the value 1 at zero, and

P̃k = {p ∈ Pk : p(λn) = 0} .

a) Show that the error in CG satisfies

‖x− xk‖A ≤ ‖x− x0‖A inf
p∈P̃k

max
τ∈[λ1,λn−1]

|p(τ)|.

b) From the previous item show that the error in CG satisfies

‖x− xk‖A ≤ ‖x− x0‖A
λn − λ1
λn

inf
p∈Pk−1

max
τ∈[λ1,λn−1]

|p(τ)|.

2. Numerical Solution of Nonlinear Equations

1. Consider the nonlinear equation ex = sinx.
a) Show that there is a solution x∗ ∈ (−5/4π,−π).
b) Consider the following iterative methods:

xk+1 = ln sin(xk), xk+1 = arcsin exk .

What can you say about the local convergence of these methods? About their conver-
gence order?

c) Provide a method that converges quadratically to x∗. You may invoke a Theorem, but
you must precisely state it and verify its conditions.

3. Numerical Solution of ODEs

1. Consider the RK methods given by the tables

0 1
4
−1

4
2
3

1
4

5
12

1
4

3
4

1
3

5
12
− 1

12
1 3

4
1
4

3
4

1
4

a) Show that these methods satisfy all necessary order conditions to be of order at least
two.

b) Show one of these methods is a collocation method, while the other one is not. For
the collocation method find its order of consistency.

2. Show that the explicit multistep method

wk+3 + α2w
k+2 + α1w

k+1 + α0w
k = s

[
β2f(tk+2, w

k+2) + β1f(tk+1, w
k+1) + β0f(tk, w

k)
]

for approximating the solution to the initial value problem

u′(t) = f(t, u(t)) , u(0) = u0

is fourth order only if α0 + α2 = 8 and α1 = −9. Prove that this method cannot be both
fourth order and convergent.



4. Numerical Solution of PDEs

1. Let Gh be a uniform grid, of spacing h, of the unit square (0, 1)2 and let Vh denote the
space of grid functions that vanish on the boundary of (0, 1)2. Recall that the discrete
(finite difference) Laplacian is defined on Vh via

(∆hw)i,j =
wi−1,j + wi+1,j + wi,j−1 + wi,j+1 − 4wi,j

h2
,

where (ih, jh) ∈ Gh are in the interior.
We say that a function w ∈ Vh is discrete subharmonic if

∆hw ≥ 0.

Show that a discrete subharmonic function attains its maximum at the boundary.
2. Let a, b ∈ R, b− a = ` > 0. Given a function w ∈ C([a, b]) define W ∈ P1 by:

W (a) = w(a),

∫ b

a

W (x)dx =

∫ b

a

w(x)dx.

show that there is a constant, independent of `, such that for every w with w′′ ∈ L2(a, b)
we have

‖w −W‖L2(a,b) ≤ C`2‖w′′‖L2(a,b).

Hint: Recall that, by passing through the Taylor polynomial, one must only check two
conditions.

3. Find the values of θ for which the θ-method for the discretization of the heat equation on
a bounded interval is unconditionally stable in L∞s (L2

h).


























































































