Prelim PDEs - August 2023

Problem 1:

Let Ω be a smooth bounded domain in \mathbb{R}^{n} and $f \in C^{0}(\mathbb{R} \rightarrow \mathbb{R})$ strictly increasing. Consider the boundary value problem

$$
\begin{align*}
& \Delta u=f(u) \quad \text { in } \Omega \\
& u(x)+a(x) \partial_{\nu} u(x)=g(x) \quad \text { on } \partial \Omega \tag{*}
\end{align*}
$$

where a and g are continuous functions on $\bar{\Omega}$ and $a>0$. Assume $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ is a solution.
(a) Show: The solution of the $\operatorname{BVP}\left({ }^{*}\right)$ is unique.
(b) Assuming F to be an antiderivative of f, show: u solves the BVP if and only if u minimizes the functional

$$
I[u]:=\int_{\Omega}\left(\frac{1}{2}|\nabla u|^{2}+F(u)\right) d x+\frac{1}{2} \int_{\partial \Omega} \frac{1}{a(x)}(u(x)-g(x))^{2} d S(x)
$$

among all $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ satisfying the BC.

Problem 2:

Consider the problem

$$
\begin{aligned}
& u_{t}+u u_{x}=u-\frac{1}{4} x \\
& u(x, 0)=g(x)
\end{aligned}
$$

(a) Write a formula for the characteristic curves $(t(\tau), x(\tau), z(\tau))$.
(b) Characterize all functions g that give rise to a global classical solution (i.e., $u \in$ $C^{1}(\mathbb{R} \times \mathbb{R})$.)

Problem 3:

Prove: If e^{u} is harmonic in \mathbb{R}^{n}, then u is constant.

Problem 4:

Let Ω be a bounded smooth domain in \mathbb{R}^{n}. For this problem, we may use the following version of the weak maximum principle without proof:

Suppose that $T>0$, and $u \in C^{2}(\bar{\Omega} \times[0, T])$ is a solution to

$$
\left\{\begin{aligned}
u_{t}-\Delta u+c(x, t) u & \leq 0 \quad \text { in } \Omega \times(0, T) \\
\frac{\partial u}{\partial \nu} & =0 \quad \text { in } \partial \Omega \times(0, T), \\
u(x, 0) & \leq 0, \quad x \in \Omega,
\end{aligned}\right.
$$

where for $c_{0}>0, c(x, t) \geq-c_{0}$, and ν is the outward unit normal to $\partial \Omega$.
Then $u \leq 0$ in $\bar{\Omega} \times[0, T]$.

Suppose that $u \in C^{2}(\bar{\Omega} \times[0, \infty))$ is solution to the initial-Neumann problem

$$
\left\{\begin{aligned}
u_{t}-\Delta u & =f(u) \quad \text { in } \Omega \times(0, \infty) \\
\frac{\partial u}{\partial \nu} & =0 \quad \text { in } \partial \Omega \times(0, \infty) \\
u(x, 0) & =g(x), \quad x \in \Omega
\end{aligned}\right.
$$

where $f(u)=u(1-u)(1+u)$ and $g \in C^{0}(\bar{\Omega})$. For a given constant v_{0}, denote by $v\left(t ; v_{0}\right)$ the solution to the initial value problem

$$
\left\{\begin{array}{l}
\frac{d v}{d t}=f(v) \tag{ODE}\\
v(0)=v_{0}
\end{array}\right.
$$

(a) Show that

$$
v(t ; m) \leq u(x, t) \leq v(t ; M), \quad \forall(x, t) \in \bar{\Omega} \times[0, \infty)
$$

where $m=\min _{\bar{\Omega}} g$ and $M=\max _{\bar{\Omega}} g$
(b) Show that if $g(x)>0$, for all $x \in \bar{\Omega}$, then $\lim _{t \rightarrow \infty} u(x, t)=1$ uniformly for $x \in \bar{\Omega}$. [Hint: What can you say about the behavior of the solution of $(O D E)$ if $v_{0}>0$?]

Problem 5:

Consider the following 1d diffusion equation with a nonlinear term

$$
\begin{equation*}
u_{t}-b u_{x x}+a\left(u_{x}\right)^{2}=0 \quad b>0, \text { and } a \neq 0 \text { constant. } \tag{*}
\end{equation*}
$$

(a) Show that the transformation $v(x, t)=e^{-\frac{a}{b} u(x, t)}$ transforms the nonlinear equation (*) into

$$
v_{t}-b v_{x x}=0
$$

(b) Apply part (a) to find an explicit formula for a solution of the initial value problem

$$
\left\{\begin{aligned}
u_{t}-b u_{x x}+a\left(u_{x}\right)^{2} & =0, \quad t>0, x \in \mathbb{R} \quad(\text { for } b>0 \text { and } a \neq 0) \\
u(x, 0) & =g(x),
\end{aligned}\right.
$$

Give a condition on the solution u that implies its uniqueness.

Question 6:

For $k=1,2$ let φ_{k}, ψ_{k} be smooth compactly supported functions defined on \mathbb{R}, and assume that u_{k} is the solution to the wave equation

$$
u_{t t}-a^{2} u_{x x}=f \quad \text { in } \quad \mathbb{R} \times(0, \infty)
$$

that satisfies

$$
u(x, 0)=\varphi_{k}(x) \quad \text { and } \quad u_{t}(x, 0)=\psi_{k}(x) \quad \text { for } \quad x \in \mathbb{R}
$$

where $a>0$ is a fixed number and $f: \mathbb{R} \times[0, \infty)$ is a given smooth function. Prove that for every $\varepsilon>0$ and $T>0$, there is $\delta>0$ such that if

$$
\sup _{x \in \mathbb{R}}\left|\varphi_{1}(x)-\varphi_{2}(x)\right| \leq \delta \quad \text { and } \quad\left(\int_{-\infty}^{\infty}\left|\psi_{1}(x)-\psi_{2}(x)\right|^{2} d x\right)^{1 / 2} \leq \delta
$$

then

$$
\sup _{x \in \mathbb{R}, t \in[0, T]}\left|u_{1}(x, t)-u_{2}(x, t)\right| \leq \varepsilon
$$

Question 7:

Let $c: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function, and $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a function such that $\varphi=0$ on B_{1}. Assume that u is a smooth solution of the nonlinear wave equation

$$
u_{t t}-\Delta u+c(x, t)|\nabla u|^{2}+u^{3}=0 \quad \text { in } \quad \mathbb{R}^{3} \times(0, \infty)
$$

that satisfies the initial data

$$
u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=0 \quad x \in \mathbb{R}^{3} .
$$

Prove that $u=0$ in the cone

$$
K=\{(x, t) \in \mathbb{R} \times[0, \infty): 0 \leq t \leq 1,|x| \leq 1-t\} .
$$

Here B_{ρ} is the ball in \mathbb{R}^{3} with radius $\rho>0$ and centered at the origin.

PDE Preliminary Exam, January 2022

There are 7 problems in this exam. Do all of them.

1. Suppose that $f(x)$ is smooth and nonnegative

$$
\begin{aligned}
u_{t}+x u_{x} & =-u^{2}, \quad(x, t) \in \mathbb{R} \times(0, \infty) \\
u(x, 0) & =f(x)
\end{aligned}
$$

(a) Write a formula for the solution u and discuss the behavior of $u(x, t)$ as $t \rightarrow \infty$.
(b) If $f(x)>0$ on $0<x<1$ and $f(x)=0$ elsewhere, plot the region in the (x, t)-plane where the (weak) solution $u(x, t)>0$.
2. For $r>0$, let $B_{r}=B_{r}(0) \subset \mathbb{R}^{n}$. Suppose that $u \in C^{2}\left(B_{1}\right) \cap C\left(\bar{B}_{1}\right)$ such that $\Delta u \geq 0$ in B_{1}. For $\epsilon>0, x_{0} \in \partial B_{1}$ and $\alpha \geq 2 n+1$ let

$$
h_{\epsilon}(x)=u(x)-u\left(x_{0}\right)+\epsilon\left(e^{-\alpha|x|^{2}}-e^{-\alpha}\right), \quad x \in \bar{B}_{1}
$$

(a) Let $D=B_{1} \backslash B_{1 / 2}$ and prove that $\Delta h_{\epsilon}(x)>0$ for all $x \in D$.
(b) Suppose that $u(x)<u\left(x_{0}\right)$ for all $x \in \bar{B}_{1} \backslash\left\{x_{0}\right\}$. Prove that there exists $\epsilon_{0}>0$ such that

$$
\max _{x \in \bar{D}} h_{\epsilon}(x)=h_{\epsilon}\left(x_{0}\right), \quad \forall \epsilon \in\left(0, \epsilon_{0}\right)
$$

and then conclude that

$$
\frac{\partial u}{\partial \nu}\left(x_{0}\right) \geq 2 \alpha \epsilon e^{-\alpha}
$$

where ν is the outward normal vector on ∂B_{1} at x_{0}.
3. For $B_{1}=B_{1}(0) \subset \mathbb{R}^{n}$, suppose that the functions $a, f \in C\left(\bar{B}_{1}\right)$ and $g \in C\left(\partial B_{1}\right)$. Suppose also that $a(x) \geq 0$ for all $x \in B_{1}$. Prove that there is at most one solution $u \in C^{2}\left(B_{1}\right) \cap$ $C\left(\bar{B}_{1}\right)$ of

$$
\left\{\begin{array}{cll}
-a(x) \Delta u(x)+\left(1-|x|^{2}\right) u(x) & =f(x) & \text { for } \quad x \in B_{1} \\
u(x) & =g(x) & \text { for } \quad x \in \partial B_{1} .
\end{array}\right.
$$

Note: the function a may not be differentiable in B_{1}.
4. Let $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), b \in \mathbb{R}$ and consider

$$
\begin{aligned}
u_{t} & =\Delta u-x \cdot \nabla u+\left(b+\frac{1}{4}|x|^{2}\right) u \quad \text { on } \mathbb{R}^{n} \times(0, \infty) \\
u & =f \quad \text { on } \mathbb{R}^{n} \times t=0
\end{aligned}
$$

Prove that the equation has a solution $u \in C^{2,1}\left(\mathbb{R}^{n} \times(0, \infty)\right) \cap C^{0}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ satisfying: for some $c, \alpha, r, t_{0}>0, \quad|u(x, r)| \leq c e^{-\alpha|x|^{2}}$ holds for all $|x|>r, 0<t<t_{0}$.
(Hint: Show that $g(x, t)=e^{\frac{-1}{4}|x|^{2}-\left(b+\frac{n}{2}\right) t}$ solves the system $g_{t}-\Delta g+\left(b+\frac{1}{4}|x|^{2}\right) g=0$. What IVP does $v=g u$ solve?)
5. Suppose $\Omega \subset \mathbb{R}^{n}$ is open, bounded, $\partial \Omega \in C^{\infty}, T>0$. Let $f \in C^{1}(\mathbb{R}), f(0)=f(1)=0$, $f^{\prime}(u)>0$ for $u<0$ and $u>1$. Let also $g \in C^{0}(\Omega)$ with $0 \leq g \leq 1$ on $\bar{\Omega}$. For $\Omega_{T}=\Omega \times(0, T]$, suppose now that $u \in C^{2,1}\left(\Omega_{T}\right) \cap C^{0}\left(\overline{\Omega_{T}}\right)$ is a solution of

$$
\begin{aligned}
u_{t} & =\Delta u+|\nabla u|^{2}-u \quad \text { on } \Omega_{T}, \\
\frac{\partial u}{\partial \nu}+f(u) & =0 \quad \text { on } \partial \Omega \times(0, T] \\
u(x, 0) & =g(x) \quad \text { for } x \in \Omega
\end{aligned}
$$

(a) Prove that $0 \leq u \leq 1$ on $\overline{\Omega_{T}}$.
(b) If g is nonconstant on Ω, prove that $0<u<1$ on Ω_{T}.
6. Consider the initial value problem

$$
\begin{aligned}
u_{t t}(x, t)-\Delta u(x, t) & =q(x) e^{t} \quad(x) \in \mathbb{R}^{3} \times \mathbb{R} \\
u(x, 0) & =0, \quad x \in \mathbb{R}^{3} \\
u_{t}(x, 0) & =0, \quad x \in \mathbb{R}^{3}
\end{aligned}
$$

where q is smooth with $q(x)=0$ for $|x| \geq r>0$ for some fixed r. Show that there is a function $v(x)$ such that for each $x \in \mathbb{R}^{3}$,

$$
u(x, t)-v(x) e^{t} \rightarrow 0, \quad \text { as } t \rightarrow \infty
$$

Hint: Use for a fact (without proof) $v(x)=\frac{1}{(4 \pi)^{3 / 2}} \int_{0}^{\infty} \int_{\mathbb{R}^{3}} \frac{e^{-\tau-\frac{|x-y|^{2}}{4 \tau}}}{\tau^{3 / 2}} q(y) d y d \tau$ solves $-\Delta v+v(x)=q(x)$ for $x \in \mathbb{R}^{3}$. Prove that that for any $x \in \mathbb{R}^{3},(1+|z|)(|v(x+z)|+$ $|\nabla v(x+z)|) \rightarrow 0$ as $|z| \rightarrow \infty$.
7. Suppose that Ω is a bounded C^{1}-domain in $\mathbb{R}^{n}, f \in C(\bar{\Omega} \times[0, \infty)), \phi \in C^{1}(\bar{\Omega}), \psi \in C(\bar{\Omega})$ are given, and $u \in C^{2}(\bar{\Omega} \times[0, \infty))$ solves the initial/boundary-value problem
(IBVP)

$$
\begin{gathered}
u_{t t}-\Delta u=f \quad \text { in } \Omega \times(0, \infty) \\
u(x, 0)=\phi(x), u_{t}(x, 0)=\psi(x), \quad x \in \Omega \\
\frac{\partial u}{\partial \nu}(x, t)=0, \quad \text { on } \partial \Omega \times(0, \infty)
\end{gathered}
$$

(a) Show that for any $t>0$

$$
\left(\left\|u_{t}(\cdot, t)\right\|_{L^{2}(\Omega)}^{2}+\|\nabla u(\cdot, t)\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2} \leq\left(\|\psi\|_{L^{2}(\Omega)}^{2}+\|\nabla \phi\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}+\int_{0}^{t}\|f(\cdot, s)\|_{L^{2}(\Omega)} d s
$$

(b) Show that (IVBP) has at most one $C^{2}(\bar{\Omega} \times[0, \infty))$ solution.

PDE Preliminary Exam, August 2021

1. Suppose that g is a smooth function on \mathbb{R} and consider the initial value problem

$$
\begin{aligned}
e^{x} u_{x}+u_{y} & =u \\
u(x, 0) & =g(x) .
\end{aligned}
$$

Write a formula for the solution. Find the domain of definition of the solution.
2. Let $B_{2}(0) \subset \mathbb{R}^{n}$, a ball centered at the origin with radius 2 and define the operator

$$
L u:=\Delta u+\mathbf{b} \cdot \nabla u+\left(4-|x|^{2}\right) u
$$

where $\mathbf{b}=\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ is a given vector of smooth functions on $\overline{B_{2}(0)}$. Suppose that for some $\lambda>4$ the function $u \in C^{2}\left(\overline{B_{2}(0)}\right)$ satisfies

$$
\begin{align*}
L u & =\lambda u \quad \text { in } B_{2}(0) \\
\frac{\partial u}{\partial \mathbf{n}} & =0 \quad \text { on } \partial B_{2}(0) . \tag{1}
\end{align*}
$$

(a) Show that for large $\eta>0$ the function $v(x)=e^{-\eta|x|^{2}}-e^{-4 \eta}$ satisfies the inequality

$$
\begin{aligned}
L v & \geq \lambda v \quad \text { in } B_{2}(0) \backslash B_{1}(0) \\
v & =0 \quad \text { on } \partial B_{2}(0) \\
v & >0 \quad \text { on } \partial B_{1}(0) .
\end{aligned}
$$

(b) Prove that the solution u of (1) cannot attain its positive maximum in $B_{2}(0)$.
(c) Prove that the solution u of (1) can have no positive maximum in $\overline{B_{2}(0)}$. [Hint: If $x_{0} \in \partial B_{2}(0)$ such that $u\left(x_{0}\right)>0$ is a maximum of u, then for appropriately chosen small ϵ work with the function $w=u+\epsilon v-u\left(x_{0}\right)$ on $B_{2}(0) \backslash B_{1}(0)$ where v is as in part (a).]
(d) Conclude that the solution u of (1) is identically 0 .
3. Suppose that u is harmonic on \mathbb{R}^{n} and $B_{1}(0)$ represents the unit ball. For any $t>0$ define

$$
I(t)=\int_{\partial B_{1}(0)} u(t y) u\left(\frac{y}{t}\right) d S_{y}
$$

Show that I is a constant function.
4. Let α, γ be positive numbers, $\beta \in \mathbb{R}$ and $\mathbf{b} \in \mathbb{R}^{n}$ be given. Consider the Cauchy problem

$$
\begin{align*}
& \alpha u_{t}+\mathbf{b} \cdot \nabla u+\beta u=\gamma \Delta u \quad \text { in } \mathbb{R}^{n} \times(0, \infty), \tag{2}\\
& u(x, 0)=g(x), \quad \text { on } \mathbb{R}^{n}
\end{align*}
$$

where g is compactly supported smooth function.
(a) Find $\kappa, \mu \in \mathbb{R}$ and $\mathbf{a} \in \mathbb{R}^{n}$ so that $v(x, t)=e^{\kappa t} u(\mu x+\mathbf{a} t, t)$ solves

$$
\begin{aligned}
v_{t} & =\Delta v \quad \text { in } \mathbb{R}^{n} \times(0, \infty), \\
v(x, 0) & =g(\mu x) \quad \text { on } \mathbb{R}^{n} .
\end{aligned}
$$

(b) Write down an explicit formula for a solution $u(x, t)$ of (2).
5. Let Ω be a bounded domain in \mathbb{R}^{n}, c be continuous in $\bar{\Omega} \times[0, T]$ with $c \geq-c_{0}$ for a nonnegative constant c_{0}, and u_{0} be continuous in Ω with $u_{0} \geq 0$. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $x f(x) \leq 0$ for all $x \in \mathbb{R}$. Suppose that $u \in C^{2,1}(\Omega \times$ $(0, T]) \cap C(\bar{\Omega} \times[0, T])$ is a solution of

$$
\begin{aligned}
u_{t}-\Delta u+c u & =u f(u) \quad \text { in } \Omega \times(0, T] \\
u(\cdot, 0) & =u_{0} \quad \text { on } \Omega \\
u & =0 \quad \text { on } \partial \Omega \times(0, T]
\end{aligned}
$$

Prove that

$$
0 \leq u(x, t) \leq e^{c_{0} T} \sup _{\Omega} u_{0}, \quad \text { for all }(x, t) \in \Omega \times(0, T]
$$

Hint: For the lower bound work on $w=u e^{-M t}$ for a suitable choice of a constant M.
6. Let Ω be a bounded smooth domain. For given smooth functions $V(x)$ and $h(x)$ in $\bar{\Omega}$, consider the equation

$$
\begin{aligned}
& u_{t t}-\Delta u+V(x) u=h(x) u^{3}, \quad x \in \Omega, t>0 \\
& u(x, 0)=f(x), u_{t}(x, 0)=g(x) \quad x \in \Omega \\
& |x|^{2} u+\frac{\partial u}{\partial n}=0, \quad x \in \partial \Omega
\end{aligned}
$$

(a) Show that if $V(x) \geq-\alpha$ for some $\alpha>0$ and any $x \in \Omega$ and there is a solution $u \in C^{2}(\bar{\Omega} \times[0, \infty))$, then it is unique.
(b) In the event $f=0$ and $h \leq 0$, if $u \in C^{2}(\bar{\Omega} \times[0, \infty))$ is a solution, show that for all $t>0$

$$
\int_{\Omega}\left(u_{t}^{2}+|\nabla u|^{2}+V(x) u^{2}\right) d x \leq \int_{\Omega} g^{2} d x
$$

7. Consider the equation

$$
\begin{aligned}
u_{t t}-\Delta u & =-u, \quad(x, y, t) \in \mathbb{R}^{2} \times(0, \infty) \\
u(x, y, 0) & =0, \quad(x, y) \in \mathbb{R}^{2} \\
u_{t}(x, y, 0) & =h(x, y), \quad(x, y) \in \mathbb{R}^{2}
\end{aligned}
$$

where h is a smooth function defined on \mathbb{R}^{2}. Find a formula for the solution $u(x, y, t)$. Hint: Introduce $v(x, y, z, t)=\cos (z) u(x, y, t)$ defined on $\mathbb{R}^{3} \times(0, \infty)$ and notice that $u(x, y, t)=v(x, y, 0, t)$.

PDE Preliminary Exam, January 2021

1. Let $\Omega=\mathbb{R}^{2} \backslash\{(0,0)\}$. Consider the first-order p.d.e.

$$
u_{x}^{2}+u_{y}^{2}=u^{2} \text { on } \Omega
$$

satisfying $u=1$ on $x^{2}+y^{2}=1$. Prove that there exist exactly two solutions $u \in C^{1}(\Omega)$. Also find $\lim _{r \rightarrow 0} u(x, y), r=\left(x^{2}+y^{2}\right)^{1 / 2}$.
2. Let $0<R_{1}<R_{2}, \Omega=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: R_{1}<|x|<R_{2}\right\},|x|^{2}=$ $x_{1}^{2}+x_{2}^{2}$. Suppose $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ satisfies $\Delta u \geq 0$ on Ω. Denote $M(r)=\sup _{|x|=r} u$ for $R_{1} \leq r \leq R_{2}$. Prove

$$
M(r) \leq\left[M\left(R_{1}\right) \ln \left(R_{2} / r\right)+M\left(R_{2}\right) \ln \left(r / R_{1}\right)\right]\left(\ln \left(R_{2} / R_{1}\right)\right)^{-1}
$$

for $r \in\left[R_{1}, R_{2}\right]$.
Hint: Consider an auxiliary harmonic function $v(r)$.
3. Suppose $\Omega \subset \mathbb{R}^{n}$ is open and bounded. Assume $b_{1}, \ldots, b_{n} \in C^{1}(\bar{\Omega})$ and let $L u=\Delta u+\sum_{i=1}^{n} b_{i}(x) u_{x_{i}}$. Suppose $u \in C^{3}(\bar{\Omega})$ satisfies $L u=0$ on Ω. Define $v=u^{2}, w=|D u|^{2}=\sum_{k=1}^{n} u_{x_{k}}^{2}$ on $\bar{\Omega}$.
Prove
(a) $L v=2|D u|^{2}$ on Ω.
(b) For some $M>0, L w \geq 2|H|^{2}-M|D u|^{2}$ on Ω; here the Hessian $H=$ $\left[u_{x_{k} x_{i}}\right],|H|^{2}=\sum_{i, k=1}^{n} u_{x_{k} x_{i}}^{2}$.
(c) For some $\lambda>0, L(\lambda v+w) \geq 0$ on Ω, and for some $C>0$

$$
\|D u\|_{L^{\infty}(\Omega)} \leq C\left(\|D u\|_{L^{\infty}(\partial \Omega)}+\|u\|_{L^{\infty}(\partial \Omega)}\right)
$$

4. Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded, $u_{0} \in C^{0}(\bar{\Omega}), g \in C^{0}(\mathbb{R}), a(x, t) \in$ $C^{1}(\bar{\Omega} \times[0, T]), a \geq 0$ on $\bar{\Omega} \times[0, T]$. Assume $u \in C^{2}(\bar{\Omega} \times[0, T])$ solves

$$
u_{t}=\operatorname{div}(\mathrm{a}(\mathrm{x}, \mathrm{t}) \nabla \mathrm{u})+\mathrm{g}(\mathrm{u})|\nabla \mathrm{u}| \quad \text { on } \Omega \times[0, \mathrm{~T}]
$$

with initial condition $u(x, 0)=u_{0}(x)$ for $x \in \Omega$, and boundary condition $u(x, t)=0$ for $(x, t) \in \partial \Omega \times[0, T]$. Prove that $|u(x, t)| \leq \max _{\bar{\Omega}}\left|u_{0}\right|$ for all $(x, t) \in \bar{\Omega} \times[0, T]$.
5. Let u be the bounded solution to the initial value problem

$$
u_{t}=\Delta u \text { on } \mathbb{R}^{\mathrm{n}} \times[0, \infty)
$$

with initial condition $u(\cdot, 0)=u_{0}$ where u_{0} is bounded on \mathbb{R}^{n} and satisfies, for some $\alpha \in(0,1)$ and $\mathrm{C}>0,\left|\mathrm{u}_{0}(\mathrm{x})-\mathrm{u}_{0}(\mathrm{y})\right| \leq \mathrm{C}|\mathrm{x}-\mathrm{y}|^{\alpha}, \mathrm{x}, \mathrm{y} \in \mathbb{R}^{\mathrm{n}}$. Prove that there exists a constant $C_{1}>0$ such that $|u(x, t)-u(x, s)| \leq C_{1}\left|t^{\alpha / 2}-s^{\alpha / 2}\right|$ for all $x \in \mathbb{R}^{n}, s, t \geq 0$.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that for every $R>0$ there exists $N=N(R)>0$ such that

$$
|f(s, t)| \leq N(|s|+|t|) \quad \text { for all }(\mathrm{s}, \mathrm{t}) \in \mathbb{R}^{2}, \quad|\mathrm{~s}|+|\mathrm{t}| \leq \mathrm{R} .
$$

Let u be a smooth compactly supported solution of the nonlinear wave equation

$$
u_{t t}-\Delta u+f\left(u, u_{t}\right)=0 \quad \text { on } \quad \mathbb{R}^{3} \times(0, \infty)
$$

Assune that there is $x_{0} \in \mathbb{R}^{3}$ and $t_{0}>0$ such that

$$
u(x, 0)=u_{t}(x, 0)=0 \quad \text { for all } \mathrm{x} \in \mathrm{~B}\left(\mathrm{x}_{0}, \mathrm{t}_{0}\right)
$$

$\left(\mathrm{B}\left(x_{0}, t_{0}\right)\right.$ is the open ball in \mathbb{R}^{3} with radius t_{0} and centered at $\left.x_{0}\right)$. Prove that $u=0$ in the cone $K\left(x_{0}, t_{0}\right)$ defined by

$$
K\left(x_{0}, t_{0}\right)=\left\{(x, t) \in \mathbb{R}^{4}: 0 \leq t \leq t_{0},\left|x-x_{0}\right| \leq t_{0}-t\right\} .
$$

Hint: One may consider the energy function $e(t)=\frac{1}{2} \int_{B\left(x_{0}, t_{0}-t\right)}\left(u_{t}^{2}+|\nabla u|^{2}+\right.$ $\left.u^{2}\right) d x$.
7. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x)=1$ if $|x|<1, g(x)=0$ if $|x| \geq 1$. Use d'Alembert's formula to find the solution u of the wave equation

$$
u_{t t}-u_{x x}=0 \quad \text { on } \mathbb{R} \times(0, \infty)
$$

with $u(x, 0)=x^{2}$ and $u_{t}(x, 0)=g(x), x \in \mathbb{R}$. Show that u is not differentiable with respect to the variable t at $\left(x_{0}, t_{0}\right)=(0,1)$.

PDE Preliminary Exam, August 2020

1. Let $\Omega=\{(x, t): x>0, t>0\}$. Assume $f \in C^{\infty}(\bar{\Omega}), f$ has bounded support and $f=0$ on $\{t=0\}$. Suppose $u \in C^{2}(\bar{\Omega})$ is a solution of

$$
\begin{aligned}
& u_{t}+u_{x}+u=f(x, t) \text { on } \Omega, \\
& u=0 \text { on }\{\mathrm{x}=0\} \cup\{\mathrm{t}=0\} .
\end{aligned}
$$

(a) For each $t>0$, prove that $u(\cdot, t)$ has bounded support.
(b) For each $t>0$, prove

$$
\int_{0}^{\infty} u_{t}^{2} d x \leq \int_{0}^{t} e^{s-t} \int_{0}^{\infty} f_{t}^{2}(x, s) d x d s
$$

(c) Prove there exists $K>0$ such that $\int_{0}^{\infty} u_{t}^{2} d x \leq K e^{-t}$ for all $t>0$.
2. Let $a>0, \Omega=(-1,1) \times(-a, a) \subset \mathbb{R}^{2}$. Suppose $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ is a solution of

$$
\Delta u=-1 \text { on } \Omega, \quad \mathrm{u}=0 \text { on } \partial \Omega .
$$

Using the functions $v(x, y)=\left(1-x^{2}\right)\left(a^{2}-y^{2}\right), w(x, y)=2-x^{2}-\frac{y^{2}}{a^{2}}$ (or constant multiples of them), find positive bounds $C_{1}(a)$ and $C_{2}(a)$ such that

$$
C_{1}(a) \leq u(0,0) \leq C_{2}(a) .
$$

3. Suppose $\Omega \subset \mathbb{R}^{n}(n \geq 3)$ is open, bounded with C^{∞}-smooth boundary $\partial \Omega$. Let $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ be a solution of

$$
-\Delta\left(u^{3}\right)=u \quad \text { on } \Omega, \quad \mathrm{u}=0 \quad \text { on } \partial \Omega .
$$

(a) Using the Green's function show there exists a constant $C>0$ depending only on Ω, but not on the solution, such that $\int_{\Omega}|u(x)|^{3} d x \leq C$, and $\sup _{\Omega}|u| \leq$ C.
(b) Show that, if $u \geq 0$ on Ω, then either, $u \equiv 0$ on Ω or $\mathrm{u}>0$ on Ω.
(c) Let v be the eigenfunction corresponding to the first (least) eigenvalue λ of $-\Delta v=\lambda v$ on $\Omega, \mathrm{v}=0$ on $\partial \Omega$ (recall $v>0$ on Ω). Show that, if $u \geq v$, then $u^{3} \geq \frac{1}{\lambda} v$.
(d) Assuming also $u^{3} \in C^{1}(\bar{\Omega})$, prove $\int_{\Omega}\left|\nabla\left(u^{2}\right)\right|^{2} d x=C_{1} \int_{\Omega} u^{2} d x \leq C_{2}$ where C_{1}, C_{2} depend only on Ω, not on u.
4. Let $u_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be smooth and compactly supported, and

$$
m=\int_{\mathbb{R}^{n}} u_{0}(y) d y .
$$

Let u be a solution of the Cauchy problem

$$
\begin{gathered}
u_{t}-\Delta u=0 \quad \text { on } \mathbb{R}^{\mathrm{n}} \times(0, \infty), \\
u(x, 0)=u_{0}(x) \quad x \in \mathbb{R}^{n},
\end{gathered}
$$

with $|u(x, t)| \leq A e^{a|x|^{2}}$ for some fixed $A, a>0$ and all $(x . t) \in \mathbb{R}^{n} \times(0, \infty)$. Prove that there is a constant N depending only on n such that

$$
\sup _{x \in \mathbb{R}^{n}}|u(x, t)-m \Phi(x, t)| \leq \frac{N}{t^{\frac{n+1}{2}}} \int_{\mathbb{R}^{n}}|y|\left|u_{0}(y)\right| d y \text {, for all } \mathrm{t}>0,
$$

where $\Phi(x, t)=\frac{1}{(4 \pi t)^{n / 2}} e^{-\frac{|x|^{2}}{4 t}}$.
5. Let u be a smooth function on $\bar{B}_{1} \times[0,1]$ that satisfies the equation

$$
\begin{gathered}
a_{0} u_{t}-b_{0} \Delta u+u=1 \text { on } \mathrm{B}_{1} \times(0,1), \\
u=1 \text { on } \partial \mathrm{B}_{1} \times(0,1), \\
u(x, 0)=1 \quad x \in B_{1},
\end{gathered}
$$

where $a_{0}, b_{0}: \bar{B}_{1} \times[0,1] \rightarrow[0, \infty)$ are given continuous functions ($B_{1}=$ unit ball in $\left.\mathbb{R}^{n}\right)$. Prove that $u \leq 1$ on $\bar{B}_{1} \times[0,1]$.
6. Assume that $\Omega \subset \mathbb{R}^{n}$ is an open, bounded set with C^{∞}-smooth boundary $\partial \Omega$. Let T $>0, \Omega_{T}=\Omega \times(0, T]$. Suppose $a \in C^{1}(\bar{\Omega}), a>0$ on $\bar{\Omega}, \phi, \psi \in$ $C^{2}(\bar{\Omega})$. Suppose $u \in C^{2}\left(\overline{\Omega_{T}}\right)$ is a solution of

$$
\begin{gathered}
u_{t t}-a(x) \Delta u=u^{3} \text { on } \Omega_{\mathrm{T}}, \\
\frac{\partial u}{\partial n}=0 \text { on } \partial \Omega \times[0, \mathrm{~T}], \\
u=\phi, \quad u_{t}=\psi \text { on } \Omega \times\{\mathrm{t}=0\} .
\end{gathered}
$$

Prove that u is unique.
7. Assume $\phi \in C^{2}(\mathbb{R})$ and $h, \psi \in C^{1}(\mathbb{R})$. Consider the initial-value problem with $u \in C^{2}(\mathbb{R} \times[0, \infty))$

$$
\begin{equation*}
u_{t t}-u_{x x}=h(x-t) \text { on } \mathbb{R} \times[0, \infty), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
u=\phi(x), \quad u_{t}=\psi(x) \text { at } \mathrm{t}=0, \quad \mathrm{x} \in \mathbb{R} . \tag{2}
\end{equation*}
$$

(a) Find a solution of the p.d.e. in (1).
(b) Find a solution of (1) and (2).

UTK PDE Prelim Exam, Spring 2020

Question 1: Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function. Find solutions of the following initial-value problem in \mathbb{R}^{2}

$$
u_{x}+\left(1+x^{2}\right) u_{y}-u=0 \quad \text { with } \quad u\left(x, \frac{1}{3} x^{3}\right)=g(x)
$$

Question 2: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function. Consider the following equation in \mathbb{R}^{2}

$$
x u_{x}+y u_{y}=2 u \quad \text { with } \quad u(x, 0)=h(x) .
$$

(a) Check that the line $\{y=0\}$ is characteristic at each point and find all h satisfying the compatibility condition on $\{y=0\}$.
(b) For h as compatible in (a), solve the PDE.

Question 3: Let ϕ be smooth, compactly supported function defined in the unit ball $B_{1} \subset \mathbb{R}^{n}$ such that $\phi=1$ on $B_{1 / 2}$, where $B_{1 / 2} \subset \mathbb{R}^{n}$ is the ball of radius $1 / 2$ centered at the origin. Suppose that u is harmonic in B_{1}.
(a) Prove that there is $\alpha>0$ depending only on n and $\sup |\Delta \phi|$ and $\sup |\nabla \phi|$ such that

$$
\Delta\left(\phi^{2}|\nabla u|^{2}+\alpha u^{2}\right) \geq 0 \quad \text { in } \quad B_{1} .
$$

(b) Use part (a) and the maximum principle to conclude that there is a constant $C>0$ depending only on n, ϕ such that

$$
\sup _{B_{1 / 2}}|\nabla u| \leq C \sup _{\partial B_{1}}|u| .
$$

Question 4: Let $B_{1} \subset \mathbb{R}^{2}$ be the unit ball with boundary ∂B_{1}. Let $f, c \in C\left(\bar{B}_{1}\right)$ and $g \in C\left(\partial B_{1}\right)$. Assume that $c(x, y)>0$ for all $(x, y) \in B_{1}$. Prove that there exists at most one C^{2}-solution to the following equation

$$
\left\{\begin{array}{ccccc}
-x^{2} u_{x x}-y^{2} u_{y y}+c(x, y) u & = & f & \text { in } & B_{1} \\
u & = & g & \text { on } \quad \partial B_{1} .
\end{array}\right.
$$

Question 5: Let a_{0} be a smooth and compactly supported function defined on \mathbb{R}^{n} and $p_{0} \in(1, \infty)$. Consider the following Cauchy problem

$$
\left\{\begin{align*}
u_{t}-\Delta u & =|u|^{p_{0}-1} u & & \text { in } \mathbb{R}^{n} \times(0, \infty) \tag{1}\\
u(x, 0) & =a_{0}(x) & & x \in \mathbb{R}^{n} .
\end{align*}\right.
$$

Define the scaling

$$
u_{\lambda}(x, t)=\lambda^{\beta} u\left(\lambda x, \lambda^{2} t\right), \quad \lambda>0 .
$$

(a) Find β (possibly depending on n, p_{0}) so that if u is a solution of (1), then u_{λ} is also a solution (1) (with appropriate scaled initial data a_{0}^{λ}).
(b) Recall that the L^{p}-norm is defined by

$$
\|u(\cdot, t)\|_{L^{p}\left(\mathbb{R}^{n}\right)}=\left(\int_{\mathbb{R}^{n}}|u(x, t)|^{p} d x\right)^{\frac{1}{p}}, \quad p \in[1, \infty)
$$

For β found in a), find p so that if u is a solution of (1) then

$$
\left\|u\left(\cdot, \lambda^{2} t\right)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=\left\|u_{\lambda}(\cdot, t)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

for all $\lambda>0$ and for all $t>0$.

Question 6: Let us denote $\mathbb{R}_{+}^{2}=\mathbb{R} \times(0, \infty)$ and $B_{1}^{+}=B_{1} \cap \mathbb{R}_{+}^{2}$, where B_{1} is the unit ball in \mathbb{R}^{2}. Assume that $u=u(x, y, t)$ is a smooth function defined on ${\overline{B_{1}}}^{+} \times[0,1]$ and satisfying

$$
u_{t}-y^{\alpha}\left[u_{x x}+u_{y y}\right]+u_{y}+u \leq 0 \quad \text { for } \quad(x, y) \in B_{1}^{+} \quad \text { and } \quad t \in(0,1),
$$

where $\alpha>0$ is a given number. Assume that $u(x, y, 0) \leq 0$, and that $u \leq 0$ on $\left(\partial B_{1} \cap \mathbb{R}_{+}^{2}\right) \times(0,1)$, where ∂B_{1} denotes the boundary of B_{1}. Prove that

$$
u \leq 0 \quad \text { on } \quad \bar{B}_{1}^{+} \times[0,1] .
$$

Note: We are not given any information on the boundary data on the part of the boundary where $y=0$.

Question 7: Let $u_{1}(x)$ and $u_{2}(x)$ be smooth functions whose supports are in the unit ball $B_{1} \subset \mathbb{R}^{n}$. For each $x_{0} \in \mathbb{R}^{n}$ and each $t_{0}>0$, let $C\left(x_{0}, t_{0}\right)$ be the cone defined by

$$
C\left(x_{0}, t_{0}\right)=\left\{(x, t): 0 \leq t \leq t_{0}, \quad\left|x-x_{0}\right| \leq t_{0}-t\right\} .
$$

Assume that $u \in C^{2}$ is the solution of the equation

$$
u_{t t}-\Delta u=0 \quad \text { in } \quad \mathbb{R}^{n} \times(0, \infty)
$$

with given initial data $u(x, 0)=u_{1}(x)$ and $u_{t}(x, 0)=u_{2}(x)$.
Give the proof for the finite propagation speed result for the wave equation, namely $u=0$ on $C\left(x_{0}, t_{0}\right)$ for all $x_{0} \in \mathbb{R}^{n}$ with $\left|x_{0}\right|>1$ and $t_{0}=\left|x_{0}\right|-1$.

Question 8: Let u be a smooth solution of the equation

$$
u_{t t}-\Delta u=f \quad \text { on } \quad \mathbb{R}^{3} \times(0, \infty)
$$

with $u(\cdot, 0)=u_{t}(\cdot, 0)=0$. Also, let v be a smooth solution of the equation

$$
v_{t t}-\Delta v=g \quad \text { on } \quad \mathbb{R}^{3} \times(0, \infty)
$$

with $v(\cdot, 0)=v_{t}(\cdot, 0)=0$. Assume that $|f|^{2} \leq g$. Prove that $2 u(x, t)^{2} \leq t^{2} v(x, t)$ for all $x \in \mathbb{R}^{3}$ and $t>0$.

PDE Prelim Exam, Fall 2019

Question 1: Solve the Cauchy problem

$$
\begin{cases}x u_{x}-y u_{y}=u-y, & x>0, y>0, \\ u\left(y^{2}, y\right)=y, & y>0 .\end{cases}
$$

Question 2: Let a, R be positive numbers and consider the equation

$$
\left\{\begin{array}{rlrlrl}
u_{t}+a u_{x} & =f(x, t), & & 0<x<R, \quad t>0, \\
u(0, t) & & =0, & & t>0, \\
u(x, 0) & =0, & & 0<x<R .
\end{array}\right.
$$

Prove that for each solution $u(x, t) \in C^{1}((0, R) \times(0, \infty))$ we have

$$
\int_{0}^{R} u^{2}(x, t) d x \leq e^{t} \int_{0}^{t} \int_{0}^{R} f^{2}(x, s) d x d s, \quad \forall t>0
$$

Question 3: Let $r>0$ and let f, g be continuous functions defined on $\bar{B}_{r}(0)$. Let u be in $C^{2}\left(B_{r}(0)\right) \cap C\left(\bar{B}_{r}(0)\right)$ be the solution of the equation

$$
\left\{\begin{array}{lll}
-\Delta u=f, & B_{r}(0), \\
u & =g, & \partial B_{r}(0)
\end{array}\right.
$$

Prove that

$$
u(0)=f_{\partial B_{r}(0)} g(x) d S(x)+\frac{1}{n(n-2) \alpha(n)} \int_{B_{r}(0)}\left[\frac{1}{|x|^{n-2}}-\frac{1}{r^{n-2}}\right] f(x) d x
$$

Hint: Consider

$$
\phi(s)=f_{\partial B_{s}(0)} u(y) d S, \quad 0<s \leq r .
$$

Compute $\phi^{\prime}(s)$ and then find $\phi(0)$.

Question 4: Let $R>0$ and we denote B_{R} the ball of radius R centered at the origin in \mathbb{R}^{n}. Let c, f be continuous functions on \bar{B}_{R}. Assume that $c \leq 0$ on \bar{B}_{R}, and also assume that $u \in C^{2}\left(B_{R}\right) \cap C\left(\bar{B}_{R}\right)$ satsifies

Prove that

$$
\sup _{B_{R}}|u| \leq \frac{R^{2}}{2 n} \sup _{B_{R}}|f|
$$

Hint: Let $A=\sup _{B_{R}}|f|$ and

$$
v(x)=\frac{A R^{2}}{2 n}\left(R^{2}-|x|^{2}\right)
$$

Use the maximum principle to prove that $|u(x)| \leq v(x)$ on B_{R}.
Question 5: Let u_{0} be the smooth and compactly supported function defined on \mathbb{R}^{n}. Assume that u is a solution of the Cauchy problem

$$
\left\{\begin{array}{cccc}
u_{t}-\Delta u & =0 & & \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u(x, 0) & =u_{0}(x) & & x \in \mathbb{R}^{n} .
\end{array}\right.
$$

Let $p, q \in(1, \infty)$ with $p \geq q$ and consider the inequality

$$
\|u(\cdot, t)\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq \frac{N}{t^{\alpha}}\left\|u_{0}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}, \quad t>0
$$

with $N=N(n, p, q)$ and $\alpha=\alpha(n, p, q)$, where we denote

$$
\|u(\cdot, t)\|_{L^{p}\left(\mathbb{R}^{n}\right)}=\left(\int_{\mathbb{R}^{n}}|u(x, t)|^{p} d x\right)^{\frac{1}{p}}
$$

and similar notation is also used for $\left\|u_{0}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}$.
Use the scaling property of the heat equation to find the number α (certainly, show all of the work).
Question 6: Assume that u is a smooth, bounded solution of the equation

$$
\left\{\begin{array}{ccccc}
u_{t}-\Delta u & = & u(1-u) & & \text { in } \quad B_{1} \times(0,1] \\
u & = & 0 & & \text { on } \quad \partial B_{1} \times(0,1] \\
u & = & \frac{1}{2} & & \text { on } \quad B_{1} \times\{0\} .
\end{array}\right.
$$

Prove that $0 \leq u \leq 1$.
Question 7: Let φ be a smooth, compactly supported function on \mathbb{R}^{2}. Assume that u is a smooth solution of

Prove that

$$
|u(x, t)| \leq \frac{1}{2 \sqrt{t}}\left(\|\varphi\|_{L^{1}\left(\mathbb{R}^{2}\right)}+\|\nabla \varphi\|_{L^{1}\left(\mathbb{R}^{2}\right)}\right), \quad \forall t>1 .
$$

Question 8: Assume that $u \in C^{2}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ is a solution of the wave equation

$$
u_{t t}=\Delta u \quad \text { in } \quad \mathbb{R}^{n} \times(0, \infty)
$$

Let

$$
E(t)=\frac{1}{2} \int_{B_{1-t}}\left[\left|u_{t}(x, t)\right|^{2}+|\nabla u(x, t)|^{2}\right] d x \quad \text { for } \quad t \in(0,1),
$$

where $\nabla u=\left(u_{x_{1}}, u_{x_{2}}, \cdots, u_{x_{n}}\right)$ and B_{r} denotes the ball in \mathbb{R}^{n} with radius $r>0$ and centered at the origin.
(a) Prove that

$$
\begin{aligned}
E^{\prime}(t) & =\int_{B_{1-t}}\left[u_{t}(x, t) u_{t t}(x, t)+\sum_{i=1}^{n} u_{x_{i}} u_{x_{i} t}\right] d x \\
& -\frac{1}{2} \int_{\partial B_{1-t}}\left[u_{t}^{2}(x, t)+|\nabla u(x, t)|^{2}\right] d S(x) .
\end{aligned}
$$

(b) Use the note that

$$
\left[u_{x_{i}} u_{t}\right]_{x_{i}}=u_{x_{i}} u_{x_{i} t}+u_{x_{i} x_{i}} u_{t t} .
$$

to prove that $E^{\prime}(t) \leq 0$. Then, conclude also that $u=0$ on $\{(x, t):|x| \leq 1-t, 0 \leq t \leq 1\}$ if $u(x, 0)=u_{t}(x, 0)=0$ for $x \in B_{1}$.

PDE Preliminary Exam, August 2018 - UTK

Question 1: For $x>0$, consider the equation:

$$
\left\{\begin{array}{l}
u u_{x}+2 x u_{y}=0 \text { in } \mathbb{R}^{2} \\
u(x, 0)=\frac{1}{x} \text { for } x>0 .
\end{array}\right.
$$

For $t_{0}, t_{1}>0$ with $t_{0} \neq t_{1}$, let C_{0} be the characteristic passing through the point ($t_{0}, 0,1 / t_{0}$) and let C_{1} be the characteristic passing through $\left(t_{1}, 0,1 / t_{1}\right)$. Determine whether the projections of C_{0} and C_{1} onto the $x-y$ plane intersect for some $y>0$ (i.e., whether a shock develops), and if they do, find the point (x, y) of intersection.

Question 2: Given a bounded domain Ω in \mathbb{R}^{n}, let h be the solution to

$$
\Delta h=-1 \quad \text { in } \Omega, \quad h=0 \quad \text { on } \partial \Omega .
$$

Let $a>0$ be a constant.
Prove: If there exists a function $u>0$ that satisfies the equation

$$
\Delta u=\frac{1}{u} \text { in } \Omega, \quad u \equiv a \text { on } \partial \Omega,
$$

then $a \geq \sqrt{\max _{\bar{\Omega}} h}$.
Hint: Prove $u \leq a$. Then prove a better upper bound for u.

Question 3:

(a) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, bounded, and even (that is, $f(-x)=f(x)$ for all $x \in \mathbb{R})$. Suppose $u=u(x, t) \in C_{1}^{2}\left(\mathbb{R}_{+}^{2}\right) \cap C\left(\overline{\mathbb{R}_{+}^{2}}\right)$ satisfies

$$
\begin{cases}u_{t}=u_{x x} & \text { for } x \in \mathbb{R}, 0<t<\infty, \\ u(x, 0)=f(x) & \text { for } x \in \mathbb{R}, \\ |u(x, t)| \leq K e^{a|x|^{2}} & \text { for } x \in \mathbb{R}, 0<t<\infty,\end{cases}
$$

for some positive constants K and a. Prove that for each $t>0, u(x, t)$ is an even function of x : i.e., $u(-x, t)=u(x, t)$ for all $t>0$.
(b) Assume $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous and bounded. For $x \geq 0$ and $t \geq 0$, suppose $u=u(x, t) \in C^{2}([0, \infty) \times[0, \infty))$ satisfies

$$
\begin{cases}u_{t}=u_{x x} & \text { for } 0<x<\infty, 0<t<\infty, \\ u(x, 0)=f(x) & \text { for } 0 \leq x<\infty, \\ u_{x}(0, t)=0 & \text { for } 0<t<\infty \\ |u(x, t)| \leq K e^{a|x|^{2}} & \text { for } x \in \mathbb{R}_{+}, 0<t<\infty,\end{cases}
$$

for some positive constants K and a. Here $u_{x}(0, t)$ is interpreted as the x-derivative of u from the right at $(0, t)$. Find a function $H=H(x, y, t)$ such that

$$
u(x, t)=\int_{0}^{\infty} H(x, y, t) f(y) d y,
$$

and justify your answer.

Question 4: Consider the nonlinear PDE

$$
u_{t t}-\Delta u+u^{3}=0, \quad x \in \mathbb{R}^{3}, \quad t \in \mathbb{R} .
$$

1. Assume that u is smooth and has compact support in x for each t. What is the energy expression

$$
E(t)=\int_{\mathbb{R}^{3}} q\left(u, u_{t}, \nabla u\right) d x
$$

which is conserved, i.e., $E^{\prime}(t)=0$?
2. For any $\alpha>0$, and $x_{0} \in \mathbb{R}^{3}$, denote by

$$
E_{\alpha}(t)=\int_{B_{\alpha}\left(x_{0}\right)} q\left(u, u_{t}, \nabla u\right) d x
$$

the energy contained in the ball of radius $\alpha>0$ centered at x_{0}. Show that for any $T>0$ and $a>0$,

$$
E_{a}(T) \leq E_{a+T}(0)
$$

Hint: Work with the 'energy'

$$
\tilde{E}(t):=\int_{B_{T+a-t}\left(x_{0}\right)} q\left(u, u_{t}, \nabla u\right) d x
$$

3. Given $a>0$, show that if $u(x, 0)=u_{t}(x, 0)=0$ for $|x|>a$, then $u(x, t)=0$ for all $|x| \geq a+t, t \geq 0$.

Question 5: Let B be the unit ball in \mathbb{R}^{n} and let $u \in C^{\infty}(\bar{B} \times[0, \infty))$ satisfy

$$
\begin{array}{ll}
u_{t}-\Delta u+u^{1 / 2}=0 & \text { on } B \times(0, \infty) \\
0 \leq u & \text { on } B \times(0, \infty) \\
u=0 & \text { on } \partial B \times(0, \infty)
\end{array}
$$

(a) Show that, if $\left.u\right|_{t=t_{0}} \equiv 0$, then $u \equiv 0$ for $t>t_{0}$ as well.
(b) Prove that there is a number T depending only on $M:=\left.\max u\right|_{t=0}$ such that $u \equiv 0$ on $B \times(T, \infty)$.
Hint: Let v be the solution of the IVP,

$$
\frac{d v}{d t}+v^{\frac{1}{2}}=0, \quad v(0)=M
$$

and consider the function $w=v-u$.

Question 6:

(a) Find a C^{1} solution in $\mathbb{R}^{+} \times \mathbb{R} \ni(x, y)$ to:

$$
x^{2} u_{x}-y^{2} u_{y}=u^{2} \text { for } x>0, y \in \mathbb{R}, \quad u(1, y)=\frac{1}{1+y^{2}}
$$

(b) Explain why this solution is not unique as a solution in $C^{1}\left(\mathbb{R}^{+} \times \mathbb{R}\right)$, but its restriction to some appropriate open set U containing the initial curve $\{1\} \times \mathbb{R}$ is unique in $C^{\mathbf{1}}(U)$.

Question 7: Suppose $f, g \in C^{\infty}\left(\mathbb{R}^{n}\right)$. Suppose $u \in C^{2}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ satisfies

$$
\begin{array}{ll}
u_{t t}=\Delta u, & (x, t) \in \mathbb{R}^{n} \times(0, \infty), \\
u(x, 0)=f(x), & x \in \mathbb{R}^{n} \\
u_{t}(x, 0)=g(x), & x \in \mathbb{R}^{n}
\end{array}
$$

Prove that

$$
\int_{\mathbb{R}^{n}} u(x, t) d x=C_{1} t+C_{2}
$$

for all $t>0$, where $C_{1}=\int_{\mathbb{R}^{n}} g(x) d x$ and $C_{2}=\int_{\mathbb{R}^{n}} f(x) d x$, under either of the two conditions:
(i) $n=3, \int_{\mathbb{R}^{3}}|f(x)| d x<\infty, \int_{\mathbb{R}^{3}}|\nabla f(x)| d x<\infty$, and $\int_{\mathbb{R}^{3}}|g(x)| d x<\infty$; or
(ii) $n \in \mathbb{N}$, and f and g have compact support.

Question 8: Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a subharmonic function and consider the spherical averages

$$
v(r):=f_{\partial B_{r}(0)} u(x) d S(x)
$$

(a) Show that the function $x \mapsto v(|x|)$ is also subharmonic in \mathbb{R}^{n}, and that $r \mapsto r^{n-1} v^{\prime}(r)$ is monotonic.
(b) Now let $n=2$. Prove that, if u is also bounded, then u is a constant.

PDE Preliminary Exam, January 2018

Instruction:

Solve all eight problems. Begin your answer to each question on a separate sheet. Explain all your steps.

1. A smooth function u defined in the first quadrant on the $x y$-plane satisfies

$$
-y \frac{\partial u}{\partial x}+x \frac{\partial u}{\partial y}=-2 u, \quad u(x, 0)=x .
$$

Determine $u(0, y)$.
2. Suppose that $u(x, t)$ is a smooth solution of

$$
\left\{\begin{array}{r}
u_{t}+u u_{x}=0 \text { for } x \in \mathbb{R}, t>0 \\
u(x, 0)=f(x), \quad \text { for } x \in \mathbb{R}
\end{array}\right.
$$

Assume that f is a C^{1} function such that

$$
f(x)=\left\{\begin{array}{ll}
0 & \text { for } x<-1 \\
1 & \text { for } x>1
\end{array} \text { and } f^{\prime}(x)>0, \text { for }|x|<1\right.
$$

(a) Sketch the characteristics emanating from ($x_{0}, 0$) for several values of $x_{0}<-1, x_{0} \in$ $(-1,1)$, and $x_{0}>1$.
(b) Show that for $t>0$,

$$
\lim _{r \rightarrow \infty} u(r x, r t)=\left\{\begin{aligned}
0 & \text { for } x<0 \\
x / t & \text { for } 0<x<t \\
1 & \text { for } x>t
\end{aligned}\right.
$$

3. Suppose that for all $r>2$, there exists a function $u_{r}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ that is continuous and satisfies

$$
\left\{\begin{aligned}
\Delta u=0 & \text { in } B_{r}(0) \backslash \overline{B_{1}(0)} \\
u(x)=0 & \text { for }|x| \geq r \\
u(x)=1, & \text { for } x \in \overline{B_{1}(0)}
\end{aligned}\right.
$$

(a) Show that for all $x \in \mathbb{R}^{3}$, if $2<r_{1} \leq r_{2}$, then

$$
0 \leq u_{r_{1}}(x) \leq u_{r_{2}}(x) \leq 1
$$

(b) Show that
i. $u(x)=\lim _{r \rightarrow \infty} u_{r}(x)$ is harmonic on $\mathbb{R}^{3} \backslash \overline{B_{1}(0)}$
ii. $\lim _{|x| \rightarrow \infty} u(x)=0$.
[Hint: noting that $\frac{1}{|x|}$ is harmonic, study $u_{r}(x)-\frac{1}{|x|}$ over an annulus.]
4. Denote by $\mathbb{R}_{+}^{n}=\left\{\mathrm{x}=\left(\mathrm{x}^{\prime}, x_{n}\right): x_{n}>0\right\}, \Sigma=\left\{\mathrm{x}=\left(\mathrm{x}^{\prime}, x_{n}\right): x_{n}=0\right\}$.

Suppose that u is harmonic in \mathbb{R}_{+}^{n}, continuous on $\mathbb{R}_{+}^{n} \cup \Sigma$, and $u=0$ on Σ. Define

$$
\bar{u}\left(x^{\prime}, x_{n}\right):=\left\{\begin{array}{l}
u\left(x^{\prime}, x_{n}\right) \text { for } x_{n} \geq 0 \\
-u\left(x^{\prime},-x_{n}\right) \text { for } x_{n}<0 .
\end{array}\right.
$$

Then show that \bar{u} is harmonic in \mathbb{R}^{n}.
5. Let $\Omega \subseteq \mathbb{R}^{n}$ be a C^{∞} bounded domain. Assume that $u_{0} \in C^{\infty}(\bar{\Omega}), a \in C([0, \infty))$, and $\lim _{t \rightarrow \infty} a(t) \leq 0$. Suppose also $u \in C^{2}(\bar{\Omega} \times[0, \infty))$ satisfies

$$
\left\{\begin{array}{l}
u_{t}=\Delta u+a(t) u \text { on } \Omega \times(0, \infty), \\
u=0 \quad \text { on } \partial \Omega \times(0, \infty) \\
u=u_{0} \quad \Omega \times\{t=0\}
\end{array}\right.
$$

Prove that

$$
\lim _{t \rightarrow \infty} \int_{\Omega} u^{2}(x, t) d x=0
$$

(Hint: Use the Energy method. You may apply Poincarés inequality.)
6. Let $\Omega \subseteq \mathbb{R}^{n}$ be a C^{∞} bounded domain, $T>0$, and $\mathbf{a} \in \mathbb{R}^{n}$ is a given vector. Suppose $u \in C^{2}(\bar{\Omega} \times[0, T])$ satisfies

$$
\left\{\begin{aligned}
u_{t} & =\Delta u+\mathbf{a} \cdot \nabla u+u^{2} \quad \text { on } \Omega \times(0, T], \\
u & =0 \quad \text { on } \partial \Omega \times(0, T] \\
u & =0 \quad \Omega \times\{t=0\} .
\end{aligned}\right.
$$

Prove that
(a) $u \geq 0$, on $\Omega \times(0, T]$,
(b) $u_{t} \geq 0$ on $\Omega \times(0, T]$.
(Hint: What equation does u_{t} solve?)
7. Let $\Omega \subseteq \mathbb{R}^{n}$ be a C^{∞} bounded domain and let $T>0$. Suppose $V=V(x)$ and $h=h(x)$ are continuous functions on $\bar{\Omega}$, with $V(x) \geq 0$. Suppose $u=u(x, t) \in C^{2}(\bar{\Omega} \times[0, T])$, where $x \in \Omega$ and $t \in[0, T]$, and u satisfies

$$
\begin{cases}u_{t t}-\Delta u+V(x) u=h(x) & \text { on } \Omega \times(0, T) \\ u(x, 0)=0 & \text { on } \Omega ; \\ u_{t}(x, 0)=0 & \text { on } \Omega ; \\ u=-D_{\vec{n} u} & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

where $D_{\vec{n}} u$ is the outward normal derivative of u on $\partial \Omega$.
(a) Prove that $\int_{\Omega} h(x) u(x, t) d x \geq 0$ for all $t \geq 0$.

Hint: Consider

$$
E(t)=\frac{1}{2} \int_{\Omega} u_{t}^{2}+|\nabla u|^{2}+V u^{2}-2 h u d x+\frac{1}{2} \int_{\partial \Omega} u^{2} d \sigma
$$

where $d \sigma$ is surface measure on $\partial \Omega$.
(b) Suppose in addition that $V(x) \geq A$ and $|h(x)| \leq B$, for all $x \in \Omega$, for some constants $A>0$ and $B>0$. Prove that

$$
\int_{\Omega}|u(x, t)| d x \leq \frac{2 B|\Omega|}{A}
$$

for all $t \geq 0$, where $|\Omega|=\int_{\Omega} d x$ is the measure of Ω.
Hint: Start by writing $\int_{\Omega}|u| d x=\int_{\Omega} \frac{\sqrt{V}|u|}{\sqrt{V}} d x$, and apply Cauchy Schwartz.
8. Suppose $u \in C^{2}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ is a solution of

$$
\begin{cases}u_{t t}=\Delta u & \text { on } \mathbb{R}^{n} \times(0, \infty) \\ u(x, 0)=f(x) & \text { on } \mathbb{R}^{n} ; \\ u_{t}(x, 0)=g(x) & \text { on } \mathbb{R}^{n}\end{cases}
$$

where $f, g \in C^{\infty}\left(\mathbb{R}^{n}\right)$ have compact support: there exists $R>0$ such that $f(x)=0$ and $g(x)=0$ if $|x|>R$. Consider the statement:
(S): For all such f, g and R, and all $x_{0} \in \mathbb{R}^{n}$, there exists $T=T\left(x_{0}, R\right)>0$ such that $u\left(x_{0}, t\right)=0$ for all $t>T$.
(a) Is (S) true if $n=1$? Either prove (S) or give an example showing that S fails.
(b) Is (S) true if $n=3$? Either prove (S) or give an example showing that S fails.

PDE Preliminary Exam, August 2017

1. For a given continuous function f, solve the initial-boundary value problem

$$
\left\{\begin{array}{l}
u_{t}+(x+1)^{2} u_{x}=x, \quad \text { for } x>0, t>0 \\
u(x, 0)=f(x), \quad x>0 \\
u(0, t)=-1+t, \quad t>0
\end{array}\right.
$$

Find a condition on f so that the solution $u(x, t)$ is continuous on the first quadrant of \mathbb{R}^{2}, i.e. the region $\left\{(x, t) \in \mathbb{R}^{2}: x>0, t>0\right\}$.
2. Determine an integral (weak) solution to the Burger's equation

$$
u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0, \quad(x, t) \in \mathbb{R} \times(0, \infty)
$$

with initial data

$$
u(x, 0)=\left\{\begin{array}{l}
1 \quad \text { if } x<0 \\
1-x \quad \text { if } 0<x<1 \\
0 \quad \text { if } x>1
\end{array}\right.
$$

3. Let $n \geq 2$, and let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded domain with C^{∞}-smooth boundary. Suppose p and q are non-negative continuous functions defined on Ω, satisfying $p(x)+q(x)>0$ (strict inequality) for all $x \in \Omega$. Find all functions $u \in C^{2}(\bar{\Omega})$ satisfying

$$
\begin{cases}\triangle u=p u^{3}+q u & \text { on } \Omega \\ \frac{\partial u}{\partial \mathbf{n}}=0 & \text { on } \partial \Omega\end{cases}
$$

where $\mathbf{n}(x)$ is the outward unit normal to Ω at $x \in \partial \Omega$.
4. Suppose u is harmonic on a C^{∞} domain $\Omega \subseteq \mathbb{R}^{n}$, and let $u(x)=0$ for $x \notin \Omega$. Suppose φ is a C^{∞} function on \mathbb{R}^{n} such that $\varphi(x)=0$ if $|x| \geq 1$, and φ is radial: there exists a function $\varphi_{0}:[0, \infty) \rightarrow \mathbb{R}$ such that $\varphi(x)=\varphi_{0}(|x|)$. For $\epsilon>0$, let

$$
\varphi_{\epsilon}(x)=\frac{1}{\epsilon^{n}} \varphi\left(\frac{x}{\epsilon}\right) .
$$

Let

$$
A=\int_{\mathbb{R}^{n}} \varphi(x) d x
$$

Fix $x_{0} \in \Omega$ and let $R>0$ be such that $x \in \Omega$ if $\left|x-x_{0}\right|<R$. For $0<\epsilon<R$, prove that

$$
\varphi_{\epsilon} * u\left(x_{0}\right)=A u\left(x_{0}\right),
$$

where $*$ denotes convolution: by definition, $f * g(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y$.
5. Suppose that $\mathbf{b} \in \mathbb{R}^{n}$, and $\beta \in \mathbb{R}$ are given. Consider the Cauchy problem

$$
\left\{\begin{array}{l}
u_{t}+\mathbf{b} \cdot \nabla u+\beta u=\Delta u, \quad \text { in } \mathbb{R}^{n} \times(0, \infty) \tag{*}\\
u(x, 0)=f(x), \quad \text { on } \mathbb{R}^{n} .
\end{array}\right.
$$

(a) Determine $\mathbf{a} \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$ such that if u is a smooth solution to $(*)$, then $v(x, t)=e^{-(\mathbf{a} \cdot x+\alpha t)} u(x, t)$ solves the Cauchy problem

$$
\left\{\begin{array}{l}
v_{t}=\Delta v, \quad \text { in } \mathbb{R}^{n} \times(0, \infty) \\
v(x, 0)=e^{-\frac{\mathrm{b}}{2} \cdot x} f(x), \quad \text { on } \mathbb{R}^{n}
\end{array}\right.
$$

(b) Write down an explicit formula for a solution $u(x, t)$ to $\left({ }^{*}\right)$.
6. Let $\Omega \subset \mathbb{R}^{n}$ a bounded domain with smooth boundary, and $T>0$. Denote the cylinder $\Omega_{T}=\Omega \times(0, T]$ and its parabolic boundary $\partial_{p} \Omega_{T}=(\partial \Omega \times[0, T]) \cup(\Omega \times\{0\})$.
(a) Prove the following version of the maximum principle. Suppose that u and v are two functions in $C^{2}\left(\overline{\Omega_{T}}\right)$ such that

$$
\begin{gathered}
u_{t}-\Delta u \leq v_{t}-\Delta v \quad \text { in } \Omega_{T} \\
u \leq v \quad \text { on } \partial_{p} \Omega_{T} .
\end{gathered}
$$

Then $u \leq v$ in Ω_{T}.
(b) Suppose that $f(x, t), u_{0}(x)$ and $\phi(x, t)$ are continuous functions in their respective domains. Let $u \in C^{2}\left(\overline{\Omega_{T}}\right)$ satisfy

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=e^{-u}-f(x, t), \quad \text { in } \Omega_{T} \\
\left.u\right|_{t=0}=u_{0}, \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega \times(0, T)}=\phi .
\end{array}\right.
$$

Let $a=\|f\|_{L^{\infty}}$ and $b=\sup \left\{\left\|u_{0}\right\|_{L^{\infty}},\|\phi\|_{L^{\infty}}\right\}$.
i. Show that $-(a T+b) \leq u(x, t)$, for all $(x, t) \in \overline{\Omega_{T}}$.

Hint: Introduce $v(x, t)=-(a t+b)$ and use part $a)$.
ii. Prove $u(x, t) \leq T e^{a T+b}+a T+b$, for all $(x, t) \in \overline{\Omega_{T}}$
7. Suppose that $f \in C^{2}(\mathbb{R})$ is odd and 2-periodic (i.e. $f(x+2)=f(x)$ for all $x \in \mathbb{R}$). Let $u \in C^{2}([0,1] \times \mathbb{R})$ solve

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=\sin (\pi x) \quad \text { in }(0,1) \times \mathbb{R} \\
u(x, 0)=f(x), \quad u_{t}(x, 0)=0, \quad x \in[0,1] \\
u(0, t)=0=u(1, t), \quad t \in \mathbb{R} .
\end{array}\right.
$$

(a) Prove uniqueness of the solution $u \in C^{2}([0,1] \times \mathbb{R})$.
(b) Find the solution u, and show that it satisfies $u(x, t+2)=u(x, t)$, and $u(x,-t)=$ $u(x, t)$ for all $(x, t) \in[0,1] \times \mathbb{R}$.
8. Assume that $\Omega \subset \mathbb{R}^{n}$ is open, bounded with C^{∞}-smooth boundary $\partial \Omega$. Let $T>0$, and denote $\Omega_{T}=\Omega \times(0, T]$. Suppose also that $f \in C^{1}\left(\mathbb{R}^{n+2}\right), \phi, \psi \in C^{2}(\bar{\Omega})$, and $u \in C^{2}\left(\overline{\Omega_{T}}\right)$ is a solution of

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u=f\left(u, u_{t}, \nabla u\right), \quad \text { in } \Omega_{T} \\
u=\phi, \quad u_{t}=\psi, \quad \text { on } \Omega \times\{t=0\}, \\
\frac{\partial u}{\partial \mathbf{n}}=0, \quad \text { on } \partial \Omega \times[0, T] .
\end{array}\right.
$$

Prove that u is unique.
Hint: You may use an energy function of the form

$$
E(t)=\frac{1}{2} \int_{\Omega}\left(w_{t}^{2}+|\nabla w|^{2}+w^{2}\right) d x
$$

PDE Qualifying Exam

Fall 2016

1.) Consider the PDE , for $x \in \mathbb{R}$ and $y \in \mathbb{R}$:
$(*) \quad\left\{\begin{array}{l}2 y u_{x}+u_{y}=u^{4}, \\ u(x, 0)=f(x),\end{array}\right.$
for some C^{2} function f.
(a) Show that (*) has a solution that exists for all $x \in \mathbb{R}$ and all $y>0$ if and only if $f(t) \leq 0$ for all $t \in \mathbb{R}$.
(b) Show that if (*) has a solution for all $(x, y) \in \mathbb{R}^{2}$, then $f(t)=0$ for all t and u is identically 0 .
2.) Suppose $n \geq 2, R>0, B(0, R) \subseteq \mathbb{R}^{n}$, and $u: \overline{B(0, R)} \rightarrow \mathbb{R}$ satisfies $u \in$ $C(\overline{B(0, R)}), u$ is harmonic on $B(0, R)$, and $u \geq 0$ on $B(0, R)$.
(a) Prove that

$$
\frac{(R-|x|) R^{n-2}}{(R+|x|)^{n-1}} u(0) \leq u(x) \leq \frac{(R+|x|) R^{n-2}}{(R-|x|)^{n-1}} u(0)
$$

for all $x \in B(0, R)$.
(b) Prove that

$$
\left|u_{x_{j}}(x)\right| \leq \frac{(2 n+2) R^{n-1}}{(R-|x|)^{n}} u(0)
$$

for $x \in B(0, R)$ and $j=1,2, \ldots, n$.
3.) Suppose $n \geq 3$, and $\Omega \subseteq \mathbb{R}^{n}$ is a C^{∞} bounded domain. Let

$$
\Gamma(x)=\frac{1}{(2-n) \omega_{n}|x|^{n-2}}
$$

for $x \in \mathbb{R}^{n} \backslash\{0\}$, be the fundamental solution for the Laplacian on \mathbb{R}^{n}. Let $G(x, y)$ be the Green's function for the Laplacian on Ω (i.e., $G(x, y)=h(x, y)+\Gamma(x-y)$, where, for each $x \in \Omega, h(x, y)$ is a harmonic function of y on Ω, and $h(x, y)=-\Gamma(x-y)$ for $x \in \Omega$ and $y \in \partial \Omega)$. You can assume that $G \in C^{2}(\bar{\Omega} \times \bar{\Omega} \backslash\{(x, y) \in \bar{\Omega} \times \bar{\Omega}: x=y\})$. Prove that $\Gamma(x-y)<G(x, y)<0$, for $(x, y) \in \Omega \times \Omega$ with $x \neq y$.
4.) Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded C^{1} domain and suppose $T>0$. Let $\Omega_{T}=\Omega \times(0, T]$. Suppose $u \in C_{1}^{2}\left(\Omega_{T}\right) \cap C\left(\overline{\Omega_{T}}\right)$ satisfies

$$
\begin{cases}u_{t}=\Delta u+|\nabla u|^{2}-u(u-1)(u-2), & \text { for }(x, t) \in \Omega_{T} \\ u(x, t)=e^{-t}\left[1+\sin \left(|x|^{2}\right)\right], & \text { for }(x, t) \in \partial \Omega \times[0, T] \\ u(x, 0)=1+\sin \left(|x|^{2}\right), & \text { for } x \in \Omega\end{cases}
$$

Prove that $0 \leq u \leq 2$ on $\overline{\Omega_{T}}$.
5.) Suppose $g=g(x, t) \in C_{1}^{2}\left(\overline{\mathbb{R}_{+}^{n+1}}\right)$, where $x \in \mathbb{R}^{n}$ and $t \geq 0$, and suppose g has compact support. Suppose $u \in C_{1}^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap C\left(\overline{\mathbb{R}_{+}^{n+1}}\right)$ satisfies, for some positive constants K and a,

$$
\begin{cases}u_{t}-\Delta u=g(x, t) & \text { for } x \in \mathbb{R}^{n}, t \in(0, \infty) \\ u(x, 0)=0 & \text { for } x \in \mathbb{R}^{n} \\ |u(x, t)| \leq K e^{a|x|^{2}} & \text { for } x \in \mathbb{R}^{n}, t \in[0, \infty)\end{cases}
$$

Suppose $p>n / 2$ and $M=\max _{t \geq 0} \int_{\mathbb{R}^{n}}|g(x, t)|^{p} d x$. Prove that there exists a constant C, depending only on n and p, such that

$$
|u(x, t)| \leq C M^{1 / p} t^{1-\frac{n}{2 p}}
$$

for all $(x, t) \in \mathbb{R}_{+}^{n+1}$.
6.) Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is harmonic, and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is C^{∞}. Suppose $u \in$ $C^{2}\left(\mathbb{R}^{3} \times[0, \infty)\right)$ satisfies

$$
\begin{cases}u_{t t}=\Delta u, & x \in \mathbb{R}^{3}, t>0 \\ u(x, 0)=f(x), & x \in \mathbb{R}^{3}, \\ u_{t}(x, 0)=g(x), & x \in \Omega\end{cases}
$$

(a) Prove that

$$
|u(x, t)| \leq|f(x)|+\sup _{y \in B(0,1)}|g(y)|
$$

for $x \in \mathbb{R}^{3}$ and $0<t<1$.
(b) Prove that

$$
|u(x, t)| \leq|f(x)|+\frac{3}{4 \pi t^{2}} \int_{B(x, t)}|g(y)| d y+\frac{1}{4 \pi t} \int_{B(x, t)}|\nabla g(y)| d y
$$

for $x \in \mathbb{R}^{3}$ and $t \geq 1$.
7.) Let $n \geq 2$, let $\Omega \subseteq \mathbb{R}^{n}$ be a C^{∞} bounded domain, and let $T>0$. Suppose $\vec{h}=\left(h_{1}, h_{2}, \ldots, h_{n}\right)$, where each component $h_{j}=h_{j}(x, t): \bar{\Omega} \times[0, T] \rightarrow \mathbb{R}$ satisfies $h_{j} \in C(\bar{\Omega} \times[0, T])$. Suppose $f, g: \bar{\Omega} \rightarrow \mathbb{R}$ are continuous. Show that there is at most one function $u=u(x, t) \in C^{2}(\bar{\Omega} \times[0, T])$ satisfying

$$
\begin{cases}u_{t t}=\Delta u+\nabla u \cdot \vec{h}, & x \in \Omega, 0<t<T \\ u=0, & x \in \partial \Omega, 0 \leq t \leq T \\ u(x, 0)=f(x), & x \in \Omega, \\ u_{t}(x, 0)=g(x), & x \in \Omega\end{cases}
$$

In the following, unless otherwise stated, $\Omega \subset \mathbb{R}^{n}$ is an open, bounded set with C^{∞}-smooth boundary $\partial \Omega$. Denote $\Omega_{T}=\Omega \times(0, T]$.

1. Let $\Omega=\{(x, t): x \in \mathbb{R}, t>0\}$ and assume $u_{0}, v_{0} \in C^{1}(\mathbb{R})$. Suppose $u, v \in C^{1}(\bar{\Omega})$ solve the system

$$
\begin{gathered}
u_{t}+u_{x}=u \text { on } \bar{\Omega} \\
v_{t}+v_{x}=-v+u \text { on } \bar{\Omega} \\
u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x) \quad x \in \mathbb{R}
\end{gathered}
$$

Find $u(x, t), v(x, t)$ in terms of u_{0}, v_{0}.
2. Let $R>0$. Assume $u \in C^{2}\left(\overline{B_{R}(0)}\right)$ is nonnegative and satisfies $u(0)=0$,

$$
0 \leq \Delta u \leq 1 \text { on } \mathrm{B}_{\mathrm{R}}(0)
$$

Let u_{1}, u_{2} be the solutions of the following problems

$$
\begin{gathered}
\Delta u_{1}=\Delta u \text { on } \mathrm{B}_{\mathrm{R}}(0) \\
u_{1}=0 \text { on } \partial \mathrm{B}_{\mathrm{R}}(0)
\end{gathered}
$$

$$
\begin{aligned}
& \Delta u_{2}=0 \text { on } \mathrm{B}_{\mathrm{R}}(0) \\
& u_{2}=u \text { on } \partial \mathrm{B}_{\mathrm{R}}(0) .
\end{aligned}
$$

(a) Prove that $u=u_{1}+u_{2}$ on $B_{R}(0)$ and $u_{1} \leq 0, u_{2} \geq 0$ on $B_{R}(0)$.
(b) Prove that $\left|u_{1}(x)\right| \leq \frac{R^{2}}{2 n}$ for all $x \in B_{R}(0)$. Hint: Compare u_{1} with $\phi(x)=\frac{1}{2 n}\left(R^{2}-|x|^{2}\right)$.
(c) Prove that $u_{2}(x) \leq \frac{2^{n-1}}{n} R^{2}$ for all $x \in B_{R / 2}(0)$. Conclude $|u(x)| \leq$ $\frac{1+2^{n}}{2 n} R^{2}$ for all $x \in B_{R / 2}(0)$.
3. Let $n \geq 3, f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Assume $u \in C^{\infty}\left(\mathbb{R}^{n}\right)$ is a solution of

$$
-\Delta u=f \text { on } \mathbb{R}^{\mathbf{n}}
$$

and $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Prove there exists $C>0$ such that

$$
|u(x)| \leq \frac{C}{|x|^{n-2}}
$$

for all $x \in \mathbb{R}^{n}, x \neq 0$.
4. Let $T>0$ and assume ϕ, h, f, g are C^{∞} - smooth functions. Suppose $u, v \in C^{2}\left(\bar{\Omega}_{T}\right)$ satisfy

$$
\begin{gathered}
u_{t}-\Delta u=\phi \text { on } \Omega_{\mathrm{T}}, \\
u=h \text { on } \partial \Omega \times(0, \mathrm{~T}], \\
u=f \text { on } \Omega \times\{\mathrm{t}=0\}, \\
v_{t}-\Delta v=\phi \text { on } \Omega_{\mathrm{T}}, \\
v=h \text { on } \partial \Omega \times(0, \mathrm{~T}], \\
v=g \text { on } \Omega \times\{\mathrm{t}=0\} .
\end{gathered}
$$

Prove that $\int_{\Omega}|u(x, t)-v(x, t)|^{2} d x \leq \int_{\Omega}|f(x)-g(x)|^{2} d x$ for all $t \in[0, T]$.
5. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, bounded and $\int_{\mathbb{R}^{n}}|f| d x<\infty$. Show there exists a unique solution $u \in C^{\infty}\left(\mathbb{R}^{n} \times(0, \infty)\right) \cap C^{0}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ of

$$
\begin{cases}u_{t}=\Delta u-2 u, & \text { on } \mathbb{R}^{n} \times(0, \infty) \\ u=f, & \text { on } \mathbb{R}^{n} \times\{t=0\} \\ |u(x, t)| \leq C e^{-2 t}(1+t)^{-\frac{n}{2}}, & \text { for }(x, t) \in \mathbb{R}^{n} \times[0, \infty)\end{cases}
$$

for some constant C depending on f, n but not on x, t.
6. Let $f \in C^{1}(\mathbb{R})$ with f^{\prime} bounded on \mathbb{R} and $f(0)=0$. Suppose $\phi, \psi \in$ $C^{2}(\bar{\Omega})$ and $u \in C^{2}\left(\bar{\Omega}_{T}\right)$ is a solution of

$$
\begin{gathered}
u_{t t}-\Delta u=f(u) \text { on } \Omega_{\mathrm{T}}, \\
u=0 \text { on } \partial \Omega \times(0, \mathrm{~T}] \\
u=\phi, u_{t}=\psi \text { on } \Omega \times\{\mathrm{t}=0\} .
\end{gathered}
$$

(a) Denoting $E(t)=\frac{1}{2} \int_{\Omega}\left(u_{t}^{2}+|\nabla u|^{2}+u^{2}\right) d x$, prove $E(t) \leq E(0) e^{C t}$ for all $t \in[0, T]$, and for some constant $C>0$.
(b) Prove the solution u is unique.
7. Let $p>n / 2$. Suppose $\phi, \psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $u \in C^{2}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ is a solution of

$$
\begin{gathered}
u_{t t}-\Delta u=0 \text { on } \mathbb{R}^{\mathrm{n}} \times[0, \infty), \\
u=\phi, \quad u_{t}=\psi \text { on } \mathbb{R}^{\mathrm{n}} \times\{\mathrm{t}=0\}
\end{gathered}
$$

Prove that there exists $C>0$ such that

$$
\int_{\mathbb{R}^{n}} \frac{\left|u_{t}\right|+|\nabla u|}{(1+|x|+t)^{p}} d x \leq \frac{C}{(1+t)^{p-n / 2}}
$$

for all $t \geq 0$.

In the following, unless otherwise stated, $\Omega \subset \mathbb{R}^{\boldsymbol{n}}$ is an open, bounded set with C^{∞}-smooth boundary $\partial \Omega$. Denote $\Omega_{T}=\Omega \times(0, T]$.

1. Let $\Omega=\{(x, t): x \in \mathbb{R}, t>0\}, b \in \mathbb{R}$ and assume $a \in C^{1}(\bar{\Omega}), \phi \in C^{1}(\mathbb{R})$ are bounded. Suppose $u \in C^{1}(\bar{\Omega})$ is a solution of

$$
\begin{gathered}
u_{t}+a(x, t) u_{x}+b u=0 \text { on } \Omega \\
u(x, 0)=\phi(x), \quad x \in \mathbb{R}
\end{gathered}
$$

(a) Prove $\sup _{x \in \mathbb{R}}|u(x, t)| \leq e^{-b t} \sup _{\mathbb{R}}|\phi|$ for all $t \geq 0$.
(b) Find the solution when $a=a(t)$.
2. Let $\Omega \subset \mathbb{R}^{2}$ and suppose $g \in C^{0}(\partial \Omega)$. Show that there exists at most one solution $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ satisfying

$$
\begin{gathered}
\Delta u+u_{x}-u_{y}=u^{3} \quad \text { on } \Omega \\
u=g \text { on } \partial \Omega
\end{gathered}
$$

3. Let $\Omega \subset \mathbb{R}^{n}$. A function $v \in C^{0}(\Omega)$ is subharmonic on Ω iff for every $x \in \Omega$, there exists $r(x)>0$ such that v satisfies the mean-value property:

$$
v(x) \leq \frac{1}{\omega_{n} r^{n-1}} \int_{\partial B(x, r)} v(\xi) d S(\xi)
$$

for all $r \in(0, r(x)]$, where ω_{n} is the surface area of the unit sphere in \mathbb{R}^{n}.
(a) Suppose $u, v \in C^{0}(\Omega), u$ is harmonic on Ω, v is subharmonic on $\Omega, v \leq$ u on $\partial \Omega$. Prove $v \leq u$ on Ω. You can assume the maximum principle for subharmonic functions.
(b) Let $v \in C^{0}(\Omega)$ be subharmonic on Ω and $B\left(x_{0}, R\right) \subset \Omega$. For $r \in(0, R)$ define

$$
g(r)=\frac{1}{\omega_{n} r^{n-1}} \int_{\partial B\left(x_{0}, r\right)} v(\xi) d S(\xi)
$$

Prove g is nondecreasing on ($0, R$). Deduce the mean-value property

$$
v\left(x_{0}\right) \leq \frac{1}{\omega_{n} r^{n-1}} \int_{\partial B\left(x_{0}, r\right)} v(\xi) d S(\xi)
$$

holds for any $\overline{B\left(x_{0}, r\right)} \subset \Omega$ (note, in the definition of subharmonic function, this is assumed only for sufficiently small r). Hint: for $r_{1}<r_{2}$ use the Poisson Integral Formula on $B\left(x_{0}, r_{2}\right)$ to get a harmonic function.
4. Let $m>0, T>0$ and assume $u_{0} \in C^{0}(\bar{\Omega})$ is nonnegative on Ω. Suppose $u \in C^{2,1}\left(\Omega_{T}\right) \cap C^{0}\left(\bar{\Omega}_{T}\right)$ is a solution of

$$
\begin{gathered}
u_{t}=\Delta u+|\nabla u|^{2}+u(m-u) \text { on } \Omega_{\mathrm{T}} \\
u=0 \text { on } \partial \Omega \times(0, \mathrm{~T}] \\
u=u_{0} \text { on } \Omega \times\{t=0\}
\end{gathered}
$$

Prove $0 \leq u \leq \max \left\{m, \sup _{\Omega} u_{0}\right\}$ on $\bar{\Omega}_{\mathrm{T}}$.
5. Let $1<p<\infty, u_{0} \in C^{0}(\bar{\Omega})$. Consider

$$
\begin{gathered}
u_{t}=\Delta u+|u|^{p-1} u \text { on } \Omega_{\mathrm{T}} \\
u=0 \text { on } \partial \Omega \times(0, \mathrm{~T}] \\
u=u_{0} \text { on } \Omega \times\{t=0\}
\end{gathered}
$$

For each u_{0}, let $T_{\max }=T_{\max }\left(u_{0}\right) \in(0, \infty]$ be the maximal time such that the problem above has a solution $u \in C^{2,1}\left(\bar{\Omega} \times\left[0, T_{\max }\right)\right)$. Let $E(t)=$ $\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{1}{p+1} \int_{\Omega}|u|^{p+1} d x, \quad y(t)=\int_{\Omega} u^{2} d x$ for $t \in\left[0, T_{\max }\right)$.
(a) Prove $\frac{d}{d t} E(t)=-\int_{\Omega} u_{t}^{2} d x, t \in\left(0, T_{\max }\right)$.
(b) With $c=\frac{2(p-1)}{p+1}|\Omega|^{\frac{1-p}{2}}$ prove $\frac{d}{d t} y(t) \geq-4 E(0)+c y(t)^{\frac{p+1}{2}}, t \in\left(0, T_{\max }\right)$.
(c) Assume u_{0} is nontrivial, $E(0)<0$ and prove $T_{\max }\left(u_{0}\right)<\infty$.
6. Consider the initial-boundary value problem

$$
\begin{gathered}
u_{t t}-u_{x x}=-2+\sin x \text { on }(0, \pi) \times(0, \infty) \\
u=x^{2}-\pi x, \quad u_{t}=0 \text { at } t=0 \\
u=0 \text { at } \mathrm{x}=0, \pi
\end{gathered}
$$

(a) Find the steady state solution $u=f(x)$ of the differential equation and boundary conditions.
(b) Find the solution of the entire problem.
7. Suppose $a \in C^{0}\left(\mathbb{R}^{n}\right), a \geq 1$ on \mathbb{R}^{n} and $u_{0}, u_{1} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Suppose $u \in C^{2}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ is a solution of the problem

$$
u_{t t}-\Delta u+a(x) u_{t}=0 \text { on } \mathbb{R}^{\mathbf{n}} \times(0, \infty)
$$

$$
\begin{aligned}
u(x, 0)=u_{0}(x), & x \in \mathbb{R}^{n} \\
u_{t}(x, 0)=u_{1}(x), & x \in \mathbb{R}^{n}
\end{aligned}
$$

Let $E(t)=\int_{\Omega}\left(u_{t}^{2}+|\nabla u|^{2}\right) d x, \quad K(t)=\int_{\Omega}\left(u u_{t}+\frac{1}{2} a u^{2}\right) d x, \quad t \in[0, \infty)$.
(a) Prove $\frac{d}{d t} E \leq 0, \frac{d}{d t}(K+E) \leq-E$, and $K+E \geq 0$ for all $t \geq 0$. You may assume finite speed of propagation of solutions (the support of $u(\cdot, t)$ is bounded in \mathbb{R}^{n} for each $t \geq 0$).
(b) Prove $E(t) \leq C t^{-1}$ for all $t>0$. Hint: Integrate an inequality in (a).

1. In the region $R:=\{(x, t): x>0, t>0\}$, solve the PDE

$$
u_{t}+t^{2} u_{x}=4 u, \quad \text { with }, \quad u(0, t)=h(t), \quad u(x, 0)=1
$$

Find the conditions on h so that the solution is continuous on R.
2. Solve the following PDE (also state the domain of the solution)

$$
x^{2} u_{x}+x y u_{y}=u^{3}, \quad \text { and } \quad u=1, \quad \text { on the curve } \quad y=x^{2} .
$$

3. Let $a>0$ and $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<a^{2}\right\}$. Consider the equation

$$
\left\{\begin{aligned}
\Delta u & =0, & & \text { in } \quad D, \\
u & =1+x^{2}+3 x y, & & \text { on } \quad \partial D .
\end{aligned}\right.
$$

without solving the equation, find $u(0,0), \max _{\bar{D}} u$, and $\frac{\min }{\bar{D}} u$.
4. Let $B_{1}=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$ for $n>2$. Let u be defined on $\bar{B}_{1} \backslash\{0\}$. Assume that $u \in C\left(\bar{B}_{1} \backslash\{0\}\right) \cap C^{2}\left(B_{1} \backslash\{0\}\right), u$ is harmonic in $B_{1} \backslash\{0\}$, and

$$
\lim _{|x| \rightarrow 0} \frac{u(x)}{|x|^{2-n}}=0
$$

Prove that u can be extended to 0 so that $u \in C^{2}\left(B_{1}\right)$.
Hint: By using the maximum principle on $B_{1} \backslash B_{r}$ for $0<r<1$, one proves that $u=v$ in $B_{1} \backslash\{0\}$, where v is the solution of the equation

$$
\left\{\begin{array}{lll}
\Delta v=0, & \text { in } \quad B_{1}, \\
v & =u, & \text { on } \quad \partial B_{1} .
\end{array}\right.
$$

5. Let Ω be a non-empty, smooth bounded domain in \mathbb{R}^{n}. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a $C^{\mathbf{1}}$ function such that $\left|f^{\prime}\right|$ is bounded. Consider the reaction-diffusion equation

$$
\left\{\begin{aligned}
u_{t}-\Delta u+f(u) & =0, & & \text { in } \Omega \times(0, \infty), \\
u & =0, & & \text { on } \partial \Omega \times(0, \infty), \\
u(x, 0) & =u_{0}(x), & & x \in \Omega .
\end{aligned}\right.
$$

Prove that C^{2} solutions to the problem are unique.
6. Let $u_{0} \in C_{c}^{\infty}(\Omega)$ for some non-empty, open, smooth bounded domain $\Omega \subset \mathbb{R}^{n}$ with $n>2$. Assume also that $u_{0} \geq 0$. Let $u \in C^{\infty}(\Omega \times[0, \infty))$ be a solution of the equation

$$
\left\{\begin{array}{lll}
u_{t} & =\Delta u, & \text { in } \Omega \times(0, \infty), \\
u(\cdot, t)=0, & \text { on } \partial \Omega \times(0, \infty), \\
u(\cdot, 0)=u_{0}(\cdot), & \text { on } \Omega .
\end{array}\right.
$$

(a) Prove that for all $t>0$,

$$
\|u(\cdot, t)\|_{L^{1}(\Omega)} \leq\left\|u_{0}\right\|_{L^{1}(\Omega)}, \quad \text { and } \quad\|u(\cdot, t)\|_{L^{2}(\Omega)} \leq\left\|u_{0}\right\|_{L^{1}(\Omega)}^{\alpha}\|u(\cdot, t)\|_{L^{2^{*}}(\Omega)}^{1-\alpha},
$$

where

$$
\alpha=\frac{2^{*}-2}{2\left(2^{*}-1\right)}, \quad \text { for } \quad 2^{*}=\frac{2 n}{n-2} .
$$

(b) Prove that there is $C>0$ depending on n, Ω such that

$$
\frac{d}{d t} \int_{\Omega} u^{2}(x, t) d x \leq-C\left\|u_{0}\right\|_{L^{1}(\Omega)}^{-\frac{2 \alpha}{1-\alpha}}\left\{\int_{\Omega} u^{2}(x, t) d x\right\}^{\frac{1}{1-\alpha}}
$$

(c) Prove that (for some new $C=C(n, \Omega)>0)$

$$
\|u(\cdot, t)\|_{L^{2}(\Omega)} \leq C\left\|u_{0}\right\|_{L^{2}(\Omega)}(1+t)^{-\frac{n}{4}}, \quad t \geq 0
$$

Remark: The following inequalities maybe useful
(i) Hölder's inequality:

$$
\|f\|_{L^{p}(\Omega)} \leq\|f\|_{L^{p_{1}}(\Omega)}^{\theta_{1}}\|f\|_{L^{p_{2}}(\Omega)}^{\theta_{2}},
$$

with

$$
\frac{1}{p}=\frac{\theta_{1}}{p_{1}}+\frac{\theta_{2}}{p_{2}}, \quad \theta_{1}+\theta_{2}=1, \quad p, p_{1}, p_{2} \in(1, \infty), \quad \theta_{1}, \theta_{2} \in(0,1) .
$$

(ii) Sobolev - Poincaré inequality:

$$
\|\varphi\|_{L^{2}(\Omega)} \leq C(n, \Omega)\|\nabla \varphi\|_{L^{2}(\Omega)}, \quad \forall \varphi \in C^{\infty}(\Omega), \quad \varphi_{\mid \theta \Omega}=0 .
$$

7. Let $c>0$ be a fixed number. Solve the following wave equation

$$
\left\{\begin{array}{l}
u_{t t}=c^{2} u_{x x}+\cos (c t) \cos (x), \quad-\infty<x<\infty, \quad t>0, \\
u(x, 0)=x, \quad u_{t}(x, 0)=\sin (x), \quad-\infty<x<\infty
\end{array}\right.
$$

8. Let $u(x, t)$ be a C^{2}, compactly supported solution to the equation

$$
u_{t t}-\Delta u=0, \quad u(x, 0)=0, \quad u_{t}(x, 0)=g(x), \quad x \in \mathbb{R}^{3} \quad t>0 .
$$

Assume that $\int_{\mathbb{R}^{3}} g(x)^{2} d x<\infty$. Show that

$$
\int_{0}^{\infty} u(0, t)^{2} d t \leq \frac{1}{4 \pi} \int_{\mathbb{R}^{3}} g(x)^{2} d x
$$

PDE Qualifying Exams

August 2014

1. Let g be a given smooth function on \mathbb{R}. Solve the PDE

$$
\left\{\begin{aligned}
u_{x}+u_{y} & =u^{2}, & & \text { on }\left\{(x, y) \in \mathbb{R}^{2}, y>0\right\} \\
u(x, 0) & =g(x), & & x \in \mathbb{R} .
\end{aligned}\right.
$$

2. Let $\Omega \subset \mathbb{R}^{n}$ be an open bounded domain with smooth boundary $\partial \Omega$ for $n \in \mathbb{N}$. Let u be a harmonic function in Ω and $x_{0} \in \Omega$. Prove that

$$
\left|\frac{\partial u\left(x_{0}\right)}{\partial x_{i}}\right| \leq \frac{n}{d} \sup _{x \in \Omega}\left|u(x)-u\left(x_{0}\right)\right|, \quad \text { where } \quad d=\operatorname{dist}\left(x_{0}, \partial \Omega\right), \quad \forall i=1,2, \cdots, n
$$

Assume in addition that $u \geq 0$ in Ω, show that

$$
\left|\frac{\partial u\left(x_{0}\right)}{\partial x_{i}}\right| \leq \frac{n}{d} u\left(x_{0}\right), \quad \forall i=1,2, \cdots, n
$$

3. Let $\Omega=\mathbb{R}^{3} \backslash \overline{B_{1}(0)}$, where $B_{1}(0)$ is an open unit ball in Ω. Let u be a harmonic function in Ω such that $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Prove that there exist $r_{0}>1$ and $M>0$ such that

$$
|u(x)| \leq \frac{M}{|x|}, \quad\left|u_{x_{k}}(x)\right| \leq \frac{M}{|x|^{2}}, \quad \forall|x| \geq r_{0}, \quad \forall k=1,2,3
$$

4. Let $T \in(0, \infty)$ and $\Omega \subset \mathbb{R}^{n}$ be an open bounded domain with smooth boundary $\partial \Omega$ for $n \in \mathbb{N}$. Let $\Omega_{T}=\Omega \times(0, T]$ and $u \in C^{2}\left(\bar{\Omega}_{T}\right)$ be a solution of the equation

$$
\left\{\begin{array}{cll}
u_{t}-\Delta u+c(x, t) u & =u^{2}(1-u), & \\
\text { in } \Omega_{T} \\
u+\frac{\partial u}{\partial \stackrel{\nu}{v}} & & =0, \\
u(x, 0) & & \partial \Omega \times(0, T] \\
=g(x), & & x \in \Omega
\end{array}\right.
$$

with some given function $c(x, t)$ and $g(x)$. Assume that $c>0$ on $\bar{\Omega}_{T}$ and $0 \leq g \leq 1$ on $\bar{\Omega}$. Prove that $0 \leq u \leq 1$ on $\bar{\Omega}_{T}$.
5. Consider $\Omega=[0, a] \times[0, b] \subset \mathbb{R}^{2}$ for some fixed $a>0, b>0$.
(a) Use separation of variables to find the first (i.e. the smallest) eigenvalue λ_{1} and eigenfunction ϕ_{1} of the eigenvalue problem

$$
\left\{\begin{aligned}
-\Delta \phi & =\lambda \phi, & & \Omega \\
\phi & =0, & & \partial \Omega
\end{aligned}\right.
$$

Remark: Eigenfunctions must be non-trivial.
(b) Let g be a smooth function on $\bar{\Omega}$ and g vanishes on $\partial \Omega$. Also, let $\kappa<\lambda_{1}$. Assume that u is a solution of the heat equation

$$
\left\{\begin{array}{lll}
u_{t} & =\Delta u+\kappa u, & x \in \Omega, t>0 \\
u(x, t)=0 & \quad x \in \partial \Omega, t>0 \\
u(x, 0)=g(x), & x \in \Omega
\end{array}\right.
$$

prove that $u(x, t) \rightarrow 0$ uniformly in x as $t \rightarrow \infty$.
6. Let $T \in(0, \infty)$ and $\Omega \subset \mathbb{R}^{n}$ be an open bounded domain with smooth boundary $\partial \Omega$ for $n \in \mathbb{N}$. Let us denote $\Omega_{T}=\Omega \times(0, T)$ and Γ_{T} the parabolic boundary of Ω_{T}. Suppose that $u \in C\left(\bar{\Omega}_{T}\right) \cap C^{2}\left(\Omega_{T}\right)$ satisfies the PDE

$$
u_{t}-\Delta u=c(x, t) u, \quad(x, t) \in \Omega_{T}
$$

for some $c \in C\left(\bar{\Omega}_{T}\right)$ and $c \leq 0$. Show that if $u \geq 0$ on Γ_{T}, then

$$
\max _{(x, t) \in \bar{\Omega}_{T}} u(x, t)=\max _{(x, t) \in \Gamma_{T}} u(x, t) .
$$

Give a counter example showing that the conclusion does not hold if the condition $u \geq 0$ on Γ_{T} is violated.
7. Let $T \in(0, \infty)$ and $\Omega \subset \mathbb{R}^{n}$ be an open bounded domain with smooth boundary $\partial \Omega$ for $n \in \mathbb{N}$. Suppose that $u \in C^{2}(\bar{\Omega} \times[0, T])$ is a classical solution of the equation

$$
\left\{\begin{aligned}
u_{t t}-\Delta u & =f(x, t), & & \Omega \times(0, T) \\
u(x, t) & =0, & & (x, t) \in \partial \Omega \times(0, T) .
\end{aligned}\right.
$$

Let

$$
E(t)=\frac{1}{2} \int_{\Omega}\left[u_{t}^{2}(x, t)+|\nabla u|^{2}(x, t)\right] d x
$$

(a) Prove that

$$
E(t) \leq e^{T}\left[E(0)+\frac{1}{2} \int_{0}^{T} \int_{\Omega} f^{2}(x, s) d x d s\right], \quad \forall t \in[0, T]
$$

(b) Use the energy estimate to prove the uniqueness of the classical solution of the initial value problem

$$
\left\{\begin{aligned}
u_{t t}-\Delta u & =f(x, t), & & \Omega \times(0, T), \\
u(x, t) & =0, & & (x, t) \in \partial \Omega \times(0, T) \\
u(x, 0) & =g(x), & & x \in \Omega, \\
u_{t}(x, 0) & =h(x), & & x \in \Omega .
\end{aligned}\right.
$$

8. Let $f \in C^{1}\left(\mathbb{R}^{3}\right)$ with compact support. Suppose that $u \in C^{2}\left(\mathbb{R}^{3} \times(0, \infty)\right)$ and u solves the Cauchy problem

$$
\left\{\begin{aligned}
u_{t t}-\Delta u & =0, & & \mathbb{R}^{3} \times(0, \infty) \\
u(x, 0) & =0, & & x \in \mathbb{R}^{3} \\
u_{t}(x, 0) & =f(x), & & x \in \mathbb{R}^{3}
\end{aligned}\right.
$$

Prove that there is $M>0$ such that

$$
|u(x, t)| \leq \frac{M}{1+t}\left[\|f\|_{L^{\infty}\left(\mathbb{R}^{3}\right)}+\|f\|_{L^{1}\left(\mathbb{R}^{3}\right)}+\|\nabla f\|_{L^{1}\left(\mathbb{R}^{3}\right)}\right], \quad \forall t \geq 0 .
$$

PDE Qualifying Exam

Spring 2014
1.) (a) Solve the following Cauchy problem on \mathbb{R}^{2} :

$$
\left\{\begin{array}{l}
u_{x}+u_{y}=x+y \\
u=x^{3} \text { on the line } y=-x
\end{array}\right.
$$

(b) For what C^{1} function or functions $f(x)$ does the Cauchy problem on \mathbb{R}^{2} :

$$
\left\{\begin{array}{l}
u_{x}+u_{y}=3 u \\
u=f(x) \text { on the line } y=x
\end{array}\right.
$$

have a solution? Prove your answer.
2.) Consider Burger's equation

$$
\left\{\begin{array}{l}
u u_{x}+u_{y}=0, \text { for } x \in \mathbb{R}, y>0 \tag{*}\\
u(x, 0)=f(x), \text { for } x \in \mathbb{R}
\end{array}\right.
$$

with initial data

$$
f(x)=\left\{\begin{array}{l}
4, \text { for } x<0 \\
4-\frac{x}{2}, \text { for } 0 \leq x \leq 2 \\
3, \text { for } x>2
\end{array}\right.
$$

(a) Find, with proof, the smallest $y^{*}>0$ such that a shock occurs at $\left(x, y^{*}\right)$ for some $x \in \mathbb{R}$.
(b) Find $u(x, y)$ satisfying $(*)$ for $x \in \mathbb{R}$ and $0 \leq y<y^{*}$, except on two line segments where the partial derivatives of u may not exist.
(c) Find the integral, or weak, solution $u(x, y)$ of $(*)$ for $y \geq 0$.
3.) (a) Suppose $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ satisfics $f(x)>0$ for all $x \in \mathbb{R}^{n}$. Suppose $u \in C^{2}\left(\mathbb{R}^{n}\right)$ satisfies

$$
\Delta u-f(x) u=0
$$

on \mathbb{R}^{n}, and $u(x) \rightarrow 0$ uniformly as $|x| \rightarrow \infty$. Prove that u is identically 0 .
(b) Find a non-trivial solution of $\Delta u+u=0$ in \mathbb{R}^{3} such that $u(x) \rightarrow 0$ uniformly as $|x| \rightarrow \infty$. Hint: look for a radial solution $u(x, y, z)=v(r)$ where $r=\sqrt{x^{2}+y^{2}+z^{2}}$ and note that $r v^{\prime \prime}+2 v^{\prime}=(r v)^{\prime \prime}$.
4.) Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded open set. Suppose that $\left\{u_{n}\right\}_{n=1}^{\infty}$ is a sequence of harmonic functions on Ω such that

$$
\int_{\Omega}\left|u_{n}(x)-u_{m}(x)\right|^{2} d x \longrightarrow 0
$$

as $\max \{n, m\} \rightarrow \infty$. Prove that u_{n} converges to a harmonic function on Ω.
5.) Suppose $u=u(x, t) \in C^{2}([0,1] \times[0, T])$ satisfics

$$
\begin{cases}u_{t}=u_{x x}+t u_{x}, & x \in[0,1], t \in[0, T] \\ u_{x}(0, t)=u_{x}(1, t)=0, & t \in[0, T]\end{cases}
$$

Prove that

$$
\max _{[0,1] \times[0, T]} u(x, t)=\max _{[0,1]} u(x, 0)
$$

If you use a major theorem in PDE in your solution, provide the proof of that theorem.
6.) (a) Suppose $u=u(x, t) \in C\left(\mathbb{R}^{n} \times[0, \infty)\right) \cap C^{2}\left(\mathbb{R}^{n} \times(0, \infty)\right)$ satisfies

$$
\begin{cases}u_{t}=\triangle u, & \text { for } x \in \mathbb{R}^{n}, t>0 \\ u(x, 0)=f(x), & \text { for } x \in \mathbb{R}^{n},\end{cases}
$$

where $f(x) \geq 0$ is a C^{∞}, bounded function satisfying $\int_{\mathbb{R}^{n}} f(x) d x=2$. Suppose u satisfics

$$
|u(x, t)| \leq A e^{\alpha|x|^{2}}
$$

for some positive constants α and A. Prove that $\lim _{t \rightarrow \infty} u(x, t)=0$ and $\int_{\mathbb{R}^{n}} u(x, t) d x=$ 2 for all $t>0$.
(b) Does there exist a bounded solution $u(x, t) \in C\left(\mathbb{R}^{n} \times[0, \infty)\right) \cap C^{2}\left(\mathbb{R}^{n} \times(0, \infty)\right)$ of the initial value problem

$$
\begin{cases}u_{t}=\Delta u+\frac{\cos \left(|x|^{2}+1\right)}{1+t^{2}}, & \text { for } x \in \mathbb{R}^{n}, t>0 \\ u(x, 0)=0, & \text { for } x \in \mathbb{R}^{n} ?\end{cases}
$$

Justify your answer.
7.) Suppose $u=u(x, t) \in C^{2}(\mathbb{R} \times[0, \infty))$ satisfies

$$
\begin{cases}u_{t t}-u_{x x}+u=0, & \text { for } x \in \mathbb{R}, t>0 \\ u(x, 0)=f(x), & \text { for } x \in \mathbb{R} \\ u_{t}(x, 0)=g(x), & \text { for } x \in \mathbb{R}\end{cases}
$$

where f and g are C^{∞} and have compact support.
(a) For any $\left(x_{0}, t_{0}\right) \in \mathbb{R} \times(0, \infty)$ and $0 \leq t \leq t_{0}$, let $I(t)$ be the interval

$$
I(t)=\left[x_{0}-t_{0}+t, x_{0}+t_{0}-t\right]
$$

Define

$$
e(t)=\int_{I(t)}\left[u^{2}+u_{t}^{2}+u_{x}^{2}\right](x, t) d x
$$

for $0 \leq t \leq t_{0}$. Prove that e is non-increasing on $\left[0, t_{0}\right]$.
(b) Suppose that $f(x)=0$ and $g(x)=0$ for $|x| \geq 1$. Prove that $u(x, t)=0$ for $|x|>t+1$, for all $t>0$.
8.) Suppose $u=u(x, t) \in C^{2}(\mathbb{R} \times[0, \infty))$, is the solution of the wave equation

$$
\begin{cases}u_{t t}=\Delta u, & x \in \mathbb{R}, t>0 \\ u(x, 0)=f(x), & x \in \mathbb{R} \\ u_{t}(x, 0)=g(x), & x \in \mathbb{R}\end{cases}
$$

Suppose g and h are C^{∞} with $f(x)=g(x)=0$ for all x such that $|x| \geq R$, for some $R>0$. The kinetic energy is

$$
k(t)=\frac{1}{2} \int_{\mathbb{R}} u_{t}^{2}(x, t) d x
$$

and the potential energy is

$$
p(t)=\frac{1}{2} \int_{\mathbb{R}} u_{x}^{2}(x, t) d x
$$

(a) Prove that $k(t)+p(t)$ is constant.
(b) Prove that $k(t)=p(t)$ for all $t>R$.

PDE Qualifying Exam August 12, 2013

1.) Consider the equation

$$
\text { (*) } \quad u_{x}+2 u_{y}=u
$$

for $(x, y) \in \mathbb{R}^{2}$.
(a) Solve (*) with the Cauchy data $u(x, x)=e^{3 x}$ for all $x \in \mathbb{R}$.
(b) Suppose u satisfies (*) with Cauchy data $u(x, 2 x)=f(x)$. Prove that $f(x)=$ $C e^{x}$ for some constant C.
(c) For each constant $C \neq 0$, show that (*) with Cauchy data $u(x, 2 x)=C e^{x}$ has infinitely many solutions.
2.) Reduce the following equation on \mathbb{R}^{2} :

$$
u_{x x}+6 x^{2} u_{x y}+9 x^{4} u_{y y}+6 x u_{y}+y-x^{3}=0
$$

to canonical form and find the general solution.
3.) Let $\Omega \subseteq \mathbb{R}^{n}$ be a smooth $\left(C^{\infty}\right)$, bounded open set. Consider the problem

$$
\begin{cases}\Delta u(x)=f(x), & \text { for } x \in \Omega \tag{**}\\ u(x)+\frac{\partial u}{\partial n}=g(x), & \text { for } x \in \partial \Omega .\end{cases}
$$

where $f \in C(\Omega), g \in C(\partial \Omega)$, and $\frac{\partial}{\partial n}$ is the outward normal derivative on $\partial \Omega$.
(a) Prove that there is at most one $u \in C^{2}(\bar{\Omega})$ satisfying ($* *$).
(b) Suppose $u \in C^{2}(\bar{\Omega})$ satisfies (**), with $f \geq 0$ on Ω and $g \leq 0$ on $\partial \Omega$. Prove that $u \leq 0$ on Ω.
4.) Suppose $u=u(x, t) \in C([0,1] \times[0, \infty)) \cap C^{2}((0,1) \times(0, \infty))$, and u satisfies

$$
\begin{cases}u_{t}=u_{x x}, & \text { for } 0<x<1, t>0 \\ u(0, t)=u(1, t)=0, & \text { for } t \geq 0, \\ u(x, 0)=4 x(1-x), & \text { for } 0 \leq x \leq 1\end{cases}
$$

Prove that
(a) $0<u(x, t)<1$ for $0<x<1, t>0$;
(b) $u(1-x, t)=u(x, t)$ for $0 \leq x \leq 1, t>0$;
(c) $-8<u_{x x}(x, t)<0$ for $0<x<1, t>0$;
(d) $\int_{0}^{1} u^{2}(x, t) d x$ is a strictly decreasing function of t.
5.) Suppose $u=u(x, t) \in C^{2}([0,1] \times[0, \infty))$ satisfies

$$
\begin{cases}u_{t t}-u_{x x}=-\frac{u}{1+u^{2}}, & \text { for } 0<x<1, t>0 \\ u(0, t)=u(1, t)=0, & \text { for } t \geq 0, \\ u(x, 0)=g(x), & \text { for } 0 \leq x \leq 1,\end{cases}
$$

where g is a given function satisfying $g(0)=g(1)=0$.
(a) Define

$$
E(t)=\frac{1}{2} \int_{0}^{1} u_{t}^{2}+u_{x}^{2}+\log \left(1+u^{2}\right) d x
$$

for $t \geq 0$. Prove that E is constant.
(b) Show that there exists $C>0$ such that $|u(x, t)| \leq C$ for all $x \in[0,1]$ and $t \geq 0$.
6.) Let $\Omega \subseteq \mathbb{R}^{n}$ be an open set.
(a) Suppose $u \in C^{1}(\bar{\Omega})$ and

$$
\int_{\partial B(x, r)} \frac{\partial u}{\partial n} d S \geq 0
$$

for every $x \in \mathbb{R}^{n}$ and $r>0$ such that $B(x, r) \subseteq \Omega$, where $\frac{\partial}{\partial n}$ is the outward normal derivative on $\partial \Omega$ and $d S$ is surface measure on $\partial \Omega$. Prove that u is subharmonic on Ω. Warning: a subharmonic function is not necessarily C^{2}.
(b) Prove the converse of part (a) under the additional assumption that $u \in C^{2}(\bar{\Omega})$.
7.) Let $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded open set. Let $h \leq 0$ be a continuous function on $\bar{\Omega} \times[0, \infty)$. Prove that there exists at most one function $u=u(x, t) \in C^{2}(\bar{\Omega} \times[0, \infty))$ satisfying

$$
\begin{cases}u_{t}=\Delta u+h(x, t) u, & \text { for } x \in \Omega, t \geq 0 \\ u(x, 0)=f(x), & \text { for } x \in \Omega, \\ u(x, t)=g(x, t), & \text { for } x \in \partial \Omega, t \geq 0\end{cases}
$$

8.) Suppose $u=u(x, t) \in C^{2}\left(\mathbb{R}^{3} \times[0, \infty)\right)$, is the solution of the wave equation

$$
\begin{cases}u_{t t}=\Delta u, & \text { for } x \in \mathbb{R}^{3}, t>0 \\ u(x, 0)=0, & \text { for } x \in \mathbb{R}^{3}, \\ u_{t}(x, 0)=g(x), & \text { for } x \in \mathbb{R}^{3} .\end{cases}
$$

Suppose $g(x)=1$ for $|x|>1$. Prove that

$$
u(x, t)=t
$$

if (i) $|x|>t+1$ or (ii) $|x|<t-1$.

JANUARY 2013 PDE PRELIM

Problem 1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a bounded C^{2} function that satisfies

$$
\nabla f=G
$$

where $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies

$$
\int_{\partial B_{r}\left(x_{0}\right)} G(x) \cdot\left(x-x_{0}\right) d A(x)=0
$$

for all $x_{0} \in \mathbb{R}^{n}, r>0$. Prove that f is constant.

Problem 2. Let $\Omega=\{(x, t): 0<x<1,0<t<\infty\}$. Assume that $u \in$ $C^{2,1}(\Omega) \cap C^{0}(\bar{\Omega})$ satisfies the initial boundary value problem given by the equation

$$
\frac{\partial u}{\partial t}(x, t)=\frac{\partial^{2} u}{\partial x^{2}}(x, t)
$$

in the interior of the region Ω, together with the boundary conditions

$$
u(x, 0)=f(x), u(0, t)=\alpha(t), u(1, t)=\beta(t),
$$

where $f(0)=\alpha(0), f(1)=\beta(0)$.
(a) Show that $u(x, t)$ cannot have a maximum where $\partial^{2} u / \partial^{2} x<0$ in the interior of the region in (x, t) space with $t>0$ and $0<x<1$.
(b) State the strong maximum/minimum principle for the previous IVBP.
(c) Using a maximum/minimum principle show that if $f(x) \geq 0, \alpha(t) \geq 0$, and $\beta(t) \geq 0$, then $u(x, t) \geq 0$.

Problem 3. Suppose $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is C^{1} and bounded and satisfies the PDE

$$
u(x, y)=a(x, y) u_{x}(x, y)+b(x, y) u_{y}(x, y) .
$$

(a) Show that if a and b are constant functions, then u is identically 0 .
(b) Prove that if $a=1+x^{2}$ and $b=1+y^{2}$, the above PDE has non-vanishing bounded solutions.

Problem 4. Consider the cube $\Omega=(1,2) \times(1,2) \times(1,2)$. Suppose $u \in C^{2}(\Omega) \cap$ $C^{0}(\bar{\Omega})$ satisfies

$$
y u_{x x}+z u_{y y}+x u_{z z}=1
$$

in Ω, with $u=0$ on the boundary $\partial \Omega$. Prove that $u \geq-\frac{1}{8}$.
Hint. Compare with a function of the type $v(\vec{x})=a+b\left|\vec{x}-\vec{x}_{0}\right|^{2}$, where $a, b \in$ $\mathbb{R}, \vec{x}_{0} \in \mathbb{R}^{3}$.

Problem 5. Consider the unbounded domain $\Omega=\left\{(x, y): y>x^{2}\right\} \subset \mathbb{R}^{2}$. Suppose u is bounded and harmonic on Ω, and vanishes on $\partial \Omega$. Show $u \equiv 0$.

Hint. Test with $u \chi$, where $\chi(y)$ is a cutoff function in the second variable y, and is nonconstant only on $y \in[\ell, 2 \ell]$.

Problem 6. Suppose $u \in C^{2}\left(\mathbb{R}^{3} \times[0, \infty)\right)$ is a solution of

$$
\left\{\begin{array}{rl}
u_{t t}-\Delta u=0 & \text { on } \mathbb{R}^{3} \times[0, \infty) \\
u(x, 0)=0 & x \in \mathbb{R}^{3} \\
u_{t}(x, 0)=\psi(x) & x \in \mathbb{R}^{3}
\end{array}\right.
$$

where $\psi \in C^{\infty}\left(R^{3}\right)$ has compact support. Let $p \in[2, \infty)$. Prove that there exists $C>0$ such that:
(a) $|\nabla u(x, t)| \leq C(1+t)^{-1}$ for all $(x, t) \in \mathbb{R}^{3} \times[0, \infty)$,
(b) $\int_{\mathbb{R}^{3}}|\nabla u(x, t)|^{p} d x \leq C(1+t)^{2-p}$ for all $t \geq 0$.

Problem 7. Supposc $u \in C^{2}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ is a solution of

$$
\left\{\begin{aligned}
u_{t t}-\Delta u=0 & \text { on } \mathbb{R}^{n} \times[0, \infty) \\
u(x, 0)=\phi(x) & x \in \mathbb{R}^{n} \\
u_{t}(x, 0)=\psi(x) & x \in \mathbb{R}^{n}
\end{aligned}\right.
$$

where $\phi, \psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ have compact support. Prove that there exists $C, T>0$ such that

$$
\int_{\mathbf{R}^{n}} \frac{\left(\left|u_{t}\right|+|\nabla u|\right)^{4}}{1+|x|+t} d x \geq C t^{-n-1}
$$

for all $t \geq T$.

SOLUTIONS

Q1. G is C^{1} since f is C^{2}. Using the integral condition and the divergence theorem we obtain that $\int_{\partial B} G \cdot n d A=\int_{B} \operatorname{div} G=0$ on any ball B. Since G is $C^{\mathbf{1}}$ it follows that div $G=0$ everywhere. Taking the divergence of the first equation we obtain $\operatorname{div} \nabla f=\Delta f=\operatorname{div} G=0$, i.e. f is harmonic. Since f is also bounded, it must be constant.

Q2. Will type it soon.
Q3. Along the characteristic curves $\dot{x}=a, \dot{y}=b$, the solution u satisfies the equation $\dot{z}=z$, hence $z(t)=z(0) e^{t}$. For $t \in \mathbb{R}$, this is bounded exactly if $z(0)=0$. The reasoning with $t \in \mathbb{R}$ applies for a, b constant functions, because then the characteristic curves do exist for all t, namely $x(t)=x_{0}+a t, y(t)=y_{0}+b t$. [The same reasoning would apply for any locally Lipschizt functions $a(\cdot, \cdot), b(\cdot, \cdot)$ that satisfy (eg) linear bounds $|a(x, y)|+|b(x, y)| \leq C_{0}(|x|+|y|)$, by some ODE theory that we may not assume known in this generality, and which would guarantee global existence in time for the characteristic curves.]

In contrast, for $\dot{x}=1+x^{2}, \dot{y}=1+y^{2}$, we cover the plane with characteristic curves $x(t)=\tan \left(t+c_{0}\right)=\tan \left(t+\arctan x_{0}\right), y(t)=\tan \left(t+c_{1}\right)=\tan \left(t+\arctan y_{0}\right)$ that exist for an interval of finite length $\leq \pi$ only. We do not need $z(0)=0$ for $z(t)=z(0) e^{t}$ to be bounded on this interval. Specifically, we can choose initial data $x(0)=s, y(0)=-s, z(0)=f(s)$ for any bounded function f. Then

$$
u(\tan (t+\arctan s), \tan (t-\arctan s))=f(s) e^{t}
$$

i.e.,

$$
u(x, y)=\exp \left[\frac{1}{2}(\arctan x+\arctan y)\right] f\left[\frac{1}{2}(\arctan x-\arctan y)\right]
$$

Q4. We consider $v(x, y, z):=M+\frac{1}{6}\left(\left(x-\frac{3}{2}\right)^{2}+\left(y-\frac{3}{2}\right)^{2}+\left(z-\frac{3}{2}\right)^{2}\right)$ where M is yet to be determined. (It will turn out that we want $M=-\frac{1}{8}$.) We want to show, by maximum principle, that $w:=u-v \geq 0$.

First we note that on Ω, it holds $y v_{x x}+z v_{y y}+x v_{z z}=\frac{2}{6}(x+y+z)>1$. Therefore $y w_{x x}+z w_{y y}+x w_{z z}<0$ in Ω. Now w does have a minimum on the compact $\bar{\Omega}$. If the minimum were in the intcrior, we'd have $w_{x x} \geq 0, w_{y y} \geq 0, w_{z z} \geq 0$ there, and thus $y w_{x x}+z w_{y y}+x w_{z z} \geq 0$ in violation of the DE. So $\min w$ is taken on at the boundary, where it equals $-\max v=-M-\frac{1}{6}\left(\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right)=-M-\frac{1}{8}$, which equals 0 for our choice $M=-\frac{1}{8}$.

So we have $w \geq 0$, i.e., $u \geq v \geq M=-\frac{1}{8}$ on $\bar{\Omega}$.
Q5. We can design χ in such a way that $\chi(y)=1$ for $y \leq \ell, \chi(y)=0$ for $y \geq 2 \ell$, $\left|\chi^{\prime}\right| \leq c / \ell,\left|\chi^{\prime \prime}\right| \leq c / \ell^{2}$.

Then

$$
\begin{aligned}
0 & =\int_{\Omega} \Delta u(u \chi)=-\int_{\Omega} \nabla u \cdot(\nabla(u \chi))=-\int_{\Omega}|\nabla u|^{2} \chi-\frac{1}{2} \int_{\Omega} \nabla\left(u^{2}\right) \cdot \nabla \chi \\
& =-\int_{\Omega}|\nabla u|^{2} \chi+\frac{1}{2} \int_{\Omega} u^{2} \Delta \chi-\frac{1}{2} \int_{\partial \Omega} u^{2} \partial_{\nu} \chi d S
\end{aligned}
$$

The boundary term vanishes; the second term, with u bounded by M, can be estimated by $M^{2}\left(c / \ell^{2}\right)\left(c \ell^{3 / 2}\right)$, hence it goes to 0 as $\ell \rightarrow \infty$. Hence we find, in this limit, that $0=-\int_{\Omega}|\nabla u|^{2}$, and $u \equiv$ const. By DBC, $u \equiv 0$.

Q6 \& Q7. See Henry's sheet.

August
 PDE Preliminary Exam, 2012

In the following, unless otherwise stated, $\Omega \subset \mathbb{R}^{\boldsymbol{n}}$ is an open, bounded set with C^{∞}-smooth boundary $\partial \Omega$. Denote $\Omega_{T}=\Omega \times(0, T], \Gamma_{T}=$ parabolic boundary of $\Omega_{T}=\bar{\Omega}_{T} \backslash \Omega_{T}$.

Problem 1. Let $Q=\left\{(x, y) \in \mathbb{R}^{2}: x>0, y \geq 0\right\}$. Find the solution $u \in C^{1}(\Omega)$ of the initial-value problem

$$
\begin{gathered}
-2 x u_{x}+(x+y) u_{y}=0, \quad(x, y) \in Q \\
u(x, 0)=x, \quad x>0 .
\end{gathered}
$$

Problem 2. Let $\Omega=\left\{x \in \mathbb{R}^{3}: 0<|x|<1\right\}, S=\left\{x \in \mathbb{R}^{3}:|x|=1\right\}$. Suppose $u \in C^{2}(\Omega) \cap C^{0}(\Omega \cup S)$ satisfies $\Delta u \geq 0$ on $\Omega, u=0$ on S and u is bounded on Ω. Prove $u \leq 0$ on Ω.
Hint: Consider $v(x)=u(x)-\epsilon(1 /|x|-1)$ on an appropriate subdomain of Ω.

Problem 3. Suppose $\alpha \in \mathbb{R}, T>0$ and $f \in C^{0}(\bar{\Omega})$ with $f>0$ on Ω. Let $u \in C^{2,1}\left(\Omega_{T}\right) \cap C^{0}\left(\bar{\Omega}_{T}\right)$ be a solution of

$$
\begin{gathered}
u_{t}=\Delta u+f(x)+\alpha u \quad \text { on } \Omega_{\mathrm{T}}, \\
u=0 \text { on } \Gamma_{\mathrm{T}} .
\end{gathered}
$$

Prove $u \geq 0$ and $u_{t} \geq 0$ on $\Omega \times[0, T]$.
Problem 4. Let $a, b \in \mathbb{R}, T>0$. Suppose $\phi, \psi \in C^{\infty}(\bar{\Omega})$ and $u \in C^{2}\left(\Omega_{T}\right) \cap$ $C^{0}\left(\bar{\Omega}_{T}\right)$ is a solution of

$$
\begin{gathered}
u_{t t}-\Delta u+a u_{x_{1}}+b u=0 \text { on } \Omega_{\mathrm{T}}, \\
u=0 \text { on } \partial \Omega \times(0, \mathrm{~T}], \\
u=\phi \text { on } \Omega \times\{\mathrm{t}=0\}, \\
u_{t}=\psi \text { on } \Omega \times\{\mathrm{t}=0\} .
\end{gathered}
$$

Denoting the energy $E(t)=\frac{1}{2} \int_{\Omega}\left(u_{t}^{2}+|\nabla u|^{2}\right) d x$, prove $E(t) \leq E(0) e^{k t}$ for all $t \in[0, T]$, for some constant $k>0$. Here $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

Problem 5. Let $Q=\{(x, t): x>0, t>0\}$. Find the solution $u \in$ $C^{2}(Q) \cap C^{1}(\bar{Q})$ of

$$
\begin{gathered}
u_{t t}-u_{x x}=0, \quad(x, t) \in Q \\
u(x, 0)=x, x>0 \\
u_{t}(x, 0)=-1, \quad x>0 \\
u_{x}(0, t)+t u(0, t)=1, \quad t>0 .
\end{gathered}
$$

Problem 6. Consider the heat equation

$$
u_{t}=\Delta u \text { on } \Omega_{\mathrm{T}}
$$

and define $E(t)=\int_{\Omega} u(x, t)^{2} d x, t \in[0, T]$. With Dirichlet boundary conditions $u=0$ on $\partial \Omega \times(0, T]$, in order to prove backward uniqueness of solutions, it is sufficient to establish $E^{\prime 2} \leq E E^{\prime \prime}$ on $[0, T]$. Prove the same inequality for Robin boundary conditions $\partial u / \partial n=g(x) u$ on $\partial \Omega \times(0, T], g \in$ $C^{0}(\partial \Omega)$.

Problem 7. Let $G(x, y)$ be the Green's function for $-\Delta$ on Ω with Dirichlet boundary conditions. Define $g(x)=\int_{\Omega} G(x, y) d y, x \in \bar{\Omega}$. Suppose $u \in$ $C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ is a solution of

$$
\begin{gathered}
-\Delta u=e^{-u} \text { on } \Omega \\
u=0 \text { on } \partial \Omega .
\end{gathered}
$$

(a) Find $-\Delta g$.
(b) Prove there exists a constant $m>0$ such that $m g \leq u \leq g$ on Ω. Express m in some explicit form involving g.

In the following $\Omega \subset \mathbb{R}^{n}$ is an open, bounded set with C^{∞} - smooth boundary $\partial \Omega$. Denote $\Omega_{T}=\Omega \times(0, T], \Gamma_{T}=$ parabolic boundary of $\Omega_{T}=\bar{\Omega}_{T} \backslash \Omega_{T}$.

Problem 1. Find all positive solutions u defined on all of \mathbb{R}^{2} to the equation $x u_{x}+y u_{y}=\left(x^{2}+y^{2}\right) / u$.

Problem 2. Suppose $f \in C^{0}(\partial \Omega), f \geq 0$ on $\partial \Omega$. Show that if a solution $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ to the boundary-value problem

$$
\begin{aligned}
-\Delta u & =\frac{1}{1+u^{2}} \text { on } \Omega \\
u & =f \text { on } \partial \Omega
\end{aligned}
$$

exists, then it is unique.
Problem 3. Suppose $u \in C^{2}\left(\mathbb{R}^{3} \times[0, \infty)\right)$ is a solution of

$$
\begin{gathered}
u_{t t}-\Delta u=0 \text { on } \mathbb{R}^{3} \times[0, \infty) \\
u(x, 0)=0, \quad x \in \mathbb{R}^{3} \\
u_{t}(x, 0)=g(x), \quad x \in \mathbb{R}^{3}
\end{gathered}
$$

where $g \in C^{2}\left(\mathbb{R}^{3}\right) \cap L^{2}\left(\mathbb{R}^{3}\right)$. Prove that there exists $C>0$ such that

$$
\sup _{x \in \mathbb{R}^{3}} \int_{0}^{\infty} u(x, t)^{2} d t \leq C\|g\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}
$$

Problem 4. Let $T>0$ and suppose $f \in C^{1}(\mathbb{R}), f(0)=0$. Consider the problem

$$
\begin{gathered}
u_{t}=\Delta u+f(u) \text { on } \Omega_{\mathrm{T}} \\
u=0 \text { on } \Gamma_{\mathrm{T}}
\end{gathered}
$$

Prove this has a solution $u \in C^{2,1}\left(\Omega_{T}\right) \cap C^{0}\left(\bar{\Omega}_{T}\right)$ and that the solution is unique.

Problem 5. Let $\Omega=(0, \pi), Q=\Omega \times(0, \infty), f \in C^{0}([0, \pi]), f(0)=f(\pi)=0$.
Prove the problem

$$
\begin{gathered}
u_{t}=u_{x x}+u^{2} \text { on } Q, \\
u=0 \text { on } \partial \Omega \times(0, \infty), \\
u=f \text { on } \Omega \times\{t=0\},
\end{gathered}
$$

has no solution $u \in C^{2,1}(Q) \cap C^{0}(\bar{Q})$ if $I=\int_{0}^{\pi} f(x) \sin x d x$ is sufficiently large and positive.
Hint: Derive a differential inequality for $F(t)=\int_{0}^{\pi} u(x, t) \sin x d x$ and obtain a contradiction.

Problem 6. Suppose $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ is a solution of

$$
\begin{gathered}
\Delta u=u^{3}-u \text { on } \Omega \\
u=0 \text { on } \partial \Omega .
\end{gathered}
$$

Prove
(a) $-1 \leq u \leq 1$ on Ω, (b) $|u(x)| \neq 1$ for all $x \in \Omega$.

Problem 7. Let $T>0,1<p \leq m$. Suppose $\phi, \psi \in C^{\infty}(\bar{\Omega})$ and $u \in$ $C^{2}\left(\Omega_{T}\right) \cap C^{0}\left(\bar{\Omega}_{T}\right)$ is a solution of

$$
\begin{gathered}
u_{t t}-\Delta u+u_{t}\left|u_{t}\right|^{m-1}=u|u|^{p-1} \text { on } \Omega_{\mathrm{T}}, \\
u=0 \text { on } \partial \Omega \times(0, \mathrm{~T}], \\
u=\phi \text { on } \Omega \times\{\mathrm{t}=0\}, \\
u_{t}=\psi \text { on } \Omega \times\{\mathrm{t}=0\} .
\end{gathered}
$$

Denote $H(t)=\frac{1}{2}\left\|u_{t}(\cdot, t)\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\|\nabla u(\cdot, t)\|_{L^{2}(\Omega)}^{2}+\frac{1}{p+1}\|u(\cdot, t)\|_{L^{p+1}(\Omega)}^{p+1}$, $t \in[0, T]$ (H is not the energy for the p.d.e.). Prove that for some constant $c>0, H(t) \leq H(0) e^{c t}$ for all $t \in[0, T]$.
Hint: Calculate $\dot{H}(t)$.

Prelim Aug 2011 Partial Differential Equations

Problem 1:

Prove that every positive harmonic function in all of \mathbf{R}^{n} is a constant. Conclude that every semi-bounded harmonic function in all of \mathbf{R}^{n} is a constant.

Problem 2:

Show that the damped Burger's equation $u_{t}+u u_{x}=-u$, for $x \in \mathbf{R}, t \geq 0$, with initial data $u(x, 0)=\phi(x)$ (for a positive C^{1} function ϕ) has a global solution for $t \geq 0$, provided $\phi^{\prime}(x)>-1$.

Problem 3:

Let $Q=\mathbf{R}^{n} \times(0, \infty), f \in L^{1}\left(\mathbf{R}^{n}\right)$, and let $u \in C^{2,1}(Q) \cap C^{0}(\bar{Q})$ be the solution of the problem

$$
\begin{aligned}
u_{t}-\Delta u+u & =0 & & \text { for } t>0, x \in \mathbf{R}^{n} \\
u(x, 0) & =f(x) & & \text { for } x \in \mathbf{R}^{n} .
\end{aligned}
$$

subject to the growth condition $|u(x, t)| \leq A e^{\alpha x^{2}}$ for $x \in \mathbf{R}^{n}$ and $t \geq 0$, with certain positive constants A, α. Show that

$$
\|u(\cdot, t)\|_{L^{\infty}}\left(\mathbf{R}^{n}\right) \leq C t^{-n / 2} e^{-t}\|f\|_{L^{1}\left(\mathbf{R}^{n}\right)}
$$

for all $t>0$.

Problem 4:

Let $Q=\mathbf{R}^{n} \times(0, \infty), f \in L^{1}\left(\mathbf{R}^{n}\right)$, and $g \in C^{0}[0, \infty) \cap L^{1}(0, \infty)$. Assume that $\lim _{t \rightarrow \infty} g(t)$ exists. Suppose $u \in C^{2,1}(Q) \cap C^{0}(\bar{Q})$ satisfies

$$
\begin{aligned}
u_{t}-\Delta u & =g(t) & & \text { on } Q \\
u & =f & & \text { on } \mathrm{R}^{n} \times\{t=0\}
\end{aligned}
$$

and that the usual growth condition that implies uniqueness is satisfied. Show

$$
\lim _{t \rightarrow \infty} u(x, t)=\int_{0}^{\infty} g(t) d t \text { and } \lim _{t \rightarrow \infty} u_{t}(x, t)=0
$$

for each $x \in \mathbf{R}^{n}$.

Problem 5:

Assume in a bounded domain $\Omega \subset \mathbf{R}^{n}$, we have a solution $u \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$ to $\Delta u=u^{3}-1$ and a solution v to $\Delta v=v-1$, each vanishing at the boundary. Show that $0<v \leq u \leq 1$ in Ω.

Problem 6:

Let $g \in C^{2}\left(\mathbf{R}^{3}\right)$ satisfy the conditions

$$
|g(x)|<C \quad \text { and } \quad \int_{\mathbf{R}^{3}}|\nabla g(x)| d x<4 \pi C \quad \text { and } \quad \lim _{|x| \rightarrow \infty} g(x)=0
$$

and consider a classical solution u to the wave equation

$$
\begin{aligned}
u_{t t}-\Delta u & =0 & & \text { in } \mathbf{R}^{3} \times(0, \infty) \\
u(x, 0) & =C & & \text { for } x \in \mathbf{R}^{3} \\
u_{t}(x, 0) & =g(x) & & \text { for } x \in \mathbf{R}^{3} .
\end{aligned}
$$

where C is a given positive constant. Prove that $u(x, t)>0$ for all $(x, t) \in$ $\mathbf{R}^{3} \times[0, \infty)$.

Problem 7:

Suppose $\phi \in C^{\infty}\left(\mathbf{R}^{n}\right)$ and $\psi \in C^{\infty}\left(\mathbf{R}^{n}\right)$ have support contained in the ball $B(0, r)$, and that $u \in C^{2}\left(\mathbf{R}^{n} \times[0, \infty)\right)$ is a solution to

$$
\begin{aligned}
u_{t t}-\Delta u+\frac{1}{1+\mid x x} u_{t} & =0 & & \text { on } \mathbf{R}^{n} \times(0, \infty) \\
u(x, 0) & =\phi(x) & & \text { for } x \in \mathbf{R}^{n} \\
u_{t}(x, 0) & =\psi(x) & & \text { for } x \in \mathbf{R}^{n}
\end{aligned}
$$

Define $E(t):=\frac{1}{2} \int_{\mathbf{R}^{n}}\left(u_{t}^{2}+|\nabla u|^{2}\right) d x$ and $I(t):=\int_{t}^{\infty} \int_{\mathbf{R}^{n}} \frac{1}{1+|x|}\left(u_{t}^{2}+|\nabla u|^{2}\right) d x d s$.
(a) Prove that $\int_{t}^{\infty} \int_{\mathbf{R}^{n}} \frac{1}{1+|x|} u_{t}^{2}(x, s) d x d s \leq E(t)$.

For your information: it can be proved that $I(t) \leq C E(t)$. You do not need to do this; only be assured of the corollary that $I(t)$ is finite.
(b) Prove that there exists a positive constant C such that $I(t) \geq C E(2 t)$ for all $t \geq r$ (with the r from the support of the data). Hints: $I(t) \geq \int_{t}^{2 t} \ldots$. You may assume that the support of u has the same properties as solutions to the wave equation whose initial data have support in $B(0, r)$. And you may assume that $E(t)$ is non-increasing in t.

In the following $\Omega \subset \mathbb{R}^{n}$ is an open, bounded set with C^{∞} - smooth boundary $\partial \Omega$. Denote $\Omega_{T}=\Omega \times(0, T]$.

Problem 1. Prove the pde $u_{x}+2 x u_{y}=\left(y^{2}-x^{2}\right) u^{2}+1$ cannot have a solution $u \in C^{1}\left(\mathbb{R}^{2}\right)$ in the entire plane \mathbb{R}^{2}.

Problem 2. Let $a \in \mathbb{R}$. Show the problem

$$
\begin{gathered}
\Delta u=u^{5}+a \text { on } \Omega \\
u=0 \text { on } \partial \Omega
\end{gathered}
$$

has at most one solution $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$.
Problem 3. Let $Q=\mathbb{R}^{n} \times(0, \infty)$ and suppose $u \in C^{2,1}(Q) \cap C^{0}(\bar{Q})$ is a solution of

$$
\begin{gathered}
u_{t}-\Delta u=0 \text { on } \mathrm{Q} \\
u=g(x) \text { on } \mathbb{R}^{\mathrm{n}} \times\{\mathrm{t}=0\}
\end{gathered}
$$

satisfying the growth condition

$$
|u(x, t)| \leq A e^{\alpha|x|^{2}}, \quad(x, t) \in Q
$$

where A, α are positive constants.
(a) Assume that $g \in C^{0}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ does not depend on a variable x_{j} for some fixed j. Prove that the same is true for u.
(b) Prove that if $g \in C^{\infty}\left(\mathbb{R}^{n}\right)$ is a harmonic function on \mathbb{R}^{n}, the solution u is time independent.

Problem 4. Let $\alpha, T>0, \gamma \in \mathbb{R}$. Suppose $\phi \in C^{0}(\bar{\Omega})$ and $c \in C^{0}\left(\bar{\Omega}_{T}\right)$ with $c \geq \gamma$ on $\bar{\Omega}_{T}$. Suppose $u \in C^{2,1}\left(\Omega_{T}\right) \cap C^{1}\left(\bar{\Omega}_{T}\right)$ is a solution of

$$
\begin{gathered}
u_{t}-\Delta u+c(x, t) u=0 \text { on } \Omega_{\mathrm{T}}, \\
u=\phi \text { on } \Omega \times\{\mathrm{t}=0\}, \\
\partial u / \partial n+\alpha u=0 \text { on } \partial \Omega \times(0, \mathrm{~T}] .
\end{gathered}
$$

Prove $|u| \leq \sup _{\bar{\Omega}}|\phi| e^{-\gamma t}$ on Ω_{T} and prove u is unique.

Problem 5. Solve explicitely the initial-boundary value problem

$$
u_{t t}-4 u_{x x}=0, \quad x>0, \quad t>0
$$

with initial data

$$
\begin{gathered}
u(x, 0)=x, \quad x>0 \\
u_{t}(x, 0)=-2, \quad x>0
\end{gathered}
$$

and boundary condition

$$
u_{x}(0, t)+t u(0, t)=1, \quad t>0
$$

Problem 6. Suppose $\Omega \subset \mathbb{R}^{2}$ and $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ is a solution of

$$
\left(1+u_{y}^{2}\right) u_{x x}+\left(1+u_{x}^{2}\right) u_{y y}-2 u_{x} u_{y} u_{x y}=0 \text { on } \Omega
$$

Show $\inf _{\bar{\Omega}} u=\inf _{\partial \Omega} u$.
Problem 7. Let $T>0, a \in \mathbb{R}$. Suppose $\phi, \psi \in C^{\infty}(\bar{\Omega})$ and $u \in C^{2}\left(\Omega_{T}\right) \cap$ $C^{1}\left(\bar{\Omega}_{T}\right)$ is a solution of

$$
\begin{gathered}
u_{t t}-\Delta u+a u_{t}=0 \text { on } \Omega_{\mathrm{T}}, \\
u=\phi \text { on } \Omega \times\{\mathrm{t}=0\} \\
u_{t}=\psi \text { on } \Omega \times\{\mathrm{t}=0\} \\
\partial u / \partial n=0 \text { on } \partial \Omega \times(0, \mathrm{~T}] .
\end{gathered}
$$

Prove that for $t \in[0, T]$ the following inequality holds $E(t) \leq E(0) e^{a_{0} t}$, where $E(t)=\frac{1}{2} \int_{\Omega}\left(u_{t}^{2}+|\nabla u|^{2}\right) d x$ and $a_{0}=\max \{0,-2 a\}$.

In the following $\Omega \subset \mathbb{R}^{n}$ is an open, bounded set with C^{∞} - smooth boundary $\partial \Omega$. Denote $\Omega_{T}=\Omega \times(0, T]$.

Problem 1. Suppose $u \in C^{1}\left(\mathbb{R}^{2}\right)$ is a solution of $y u_{x}-x u_{y}=u$ on the entire plane \mathbb{R}^{2}. Prove $u=0$ on \mathbb{R}^{2}.

Problem 2. Suppose $f, g \in C^{1}(\mathbb{R})$ with $f(0)=g(0)=0, f^{\prime}>0$ and $g^{\prime}>0$ on $\mathbb{R} \backslash\{0\}$. Suppose $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ is a solution of

$$
\begin{gathered}
\Delta u=f(u) \text { on } \Omega \\
\partial u / \partial n+g(u)=0 \text { on } \partial \Omega .
\end{gathered}
$$

(a) Show $u=0$ on Ω using the maximum priciple.
(b) Show $u=0$ on Ω using the energy method.

Problem 3. Let $T>0, c \in C^{0}\left(\bar{\Omega}_{T}\right)$. Suppose $u \in C^{2,1}\left(\Omega_{T}\right) \cap C^{0}\left(\bar{\Omega}_{T}\right)$ satisfies

$$
u_{t}-\Delta u+c(x, t) u \leq 0 \text { on } \Omega_{\mathrm{T}},
$$

$$
u \leq 0 \text { on } \Gamma_{\mathrm{T}}\left(=\bar{\Omega}_{\mathrm{T}} \backslash \Omega_{\mathrm{T}}=\text { parabolic boundary of } \Omega_{\mathrm{T}}\right) .
$$

Prove $u \leq 0$ on Ω_{T}.
Hint: Consider $v=u e^{-M t}$ for a suitable constant M.
Problem 4. Suppose $u \in C^{2}\left(\mathbb{R}^{3} \times[0, \infty)\right)$ is a solution of

$$
\begin{gathered}
u_{t t}-\Delta u=0 \text { on } \mathbb{R}^{3} \times[0, \infty) \\
u(x, 0)=0, \quad x \in \mathbb{R}^{3} \\
u_{t}(x, 0)=g(x), \quad x \in \mathbb{R}^{3}
\end{gathered}
$$

where $g \in C^{2}\left(\mathbb{R}^{3}\right)$ has compact support. Prove that there exists $C>0$ such that
(a) $\left|u_{t}(x, t)\right| \leq C(1+t)^{-1}$ for all $(x, t) \in \mathbb{R}^{3} \times[0, \infty)$, and
(b) $\left(\int_{\mathbb{R}^{3}}\left|u_{t}\right|^{6} d x\right)^{1 / 6} \leq C(1+t)^{-2 / 3}$ for all $t \geq 0$.

Problem 5. Suppose $u \in C^{2}\left(\mathbb{R}^{n}\right)$ satisfies $\Delta u+u^{2}+2 u \leq 0$ on R^{n}. Show that the inequality $u \geq 1$ cannot hold on all of \mathbb{R}^{n}.
Hint: Consider the auxiliary function $v(x)=\frac{3}{2 n}\left(R^{2}-|x|^{2}\right)$ on $B(0, R)$.
Problem 6. Suppose $n \leq 3, \quad \phi \in C^{3}\left(\mathbb{R}^{n}\right), \psi \in C^{2}\left(\mathbb{R}^{n}\right)$ and ϕ, ψ have compact support. Suppose $u \in C^{2}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ is a solution of

$$
\begin{gathered}
u_{t t}-\Delta u=u^{3} \text { on } \mathbb{R}^{\mathrm{n}} \times(0, \infty) \\
u(x, 0)=\phi(x), \quad x \in \mathbb{R}^{n} \\
u_{t}(x, 0)=\psi(x), \quad x \in \mathbb{R}^{n}
\end{gathered}
$$

where $\int_{\mathbb{R}^{n}} \phi(x)^{2} d x>0$. Define the energy
$E(t)=\int_{\mathbb{R}^{n}}\left(\frac{1}{2} u_{t}^{2}+\frac{1}{2}|\nabla u|^{2}-\frac{1}{4} u^{4}\right) d x$ and $F(t)=\int_{\mathbb{R}^{n}} u^{2} d x$ for $t \geq 0$. Assume $E(0)<0$.
(a) Prove $E(t)$ is constant in t.
(b) Find a lower bound for $\|u(\cdot, t)\|_{L^{4}\left(\mathbb{R}^{n}\right)}$ and prove $F^{\prime \prime}(t) \geq 6\left\|u_{t}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}$ for each t.
(c) Prove $\left(F(t)^{-\frac{1}{2}}\right)^{\prime \prime} \leq 0$ for all $t>0$ (note $\left(F(t)^{-\frac{1}{2}}\right)^{\prime \prime}=-\frac{1}{2}\left(F F^{\prime \prime}-\right.$ $\left.\frac{3}{2} F^{\prime 2}\right) F^{-\frac{5}{2}}$.
(d) Provided that $F^{\prime}(t)>0$ for some $t>0$, show $F(t) \rightarrow \infty$ as $t \rightarrow t_{0}^{-}$for some finite $t_{0}>0$.

Problem 7. Let $Q=\mathbb{R}^{n} \times(0, \infty), n=2,3$ and $f \in C^{0}(\bar{Q})$. Suppose $u \in C^{2,1}(Q) \cap C^{0}(\bar{Q})$ is a solution of

$$
\begin{gathered}
u_{t}-\Delta u=f(x, t) \text { on } \mathrm{Q}, \\
u=0 \text { on } \mathbb{R}^{\mathrm{n}} \times\{0\} .
\end{gathered}
$$

Assume $\int_{\mathbb{R}^{n}} f(x, t)^{2} d x \leq k$ for all $t \geq 0$; and that for each $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that $|f| \leq C_{\varepsilon} e^{\varepsilon|x|^{2}}$ on Q. Assume $|u| \leq A e^{a|x|^{2}}$ holds on Q for some constants $a, A>0$. Show, for some $C, \alpha>0,|u| \leq C t^{\alpha}$ holds on Q. Give α explicitly and explain if your reasoning depends on n. Explain the purpose of $e^{a|x|^{2}}$.

