LINEAR ALGEBRA DIAGNOSTIC, AUGUST 2022

All vector spaces are assumed to be finite-dimensional, over the complex numbers, and all matrices are assumed to be complex, unless otherwise stated.

- (1) Suppose that T and S are both linear transformations from \mathbb{C}^6 to \mathbb{C}^2 . Prove that there exists a nonzero vector $v \in \mathbb{C}^6$ such that $S(v) = T(v) = \mathbf{0}$.
- (2) Let T and S be linear operators on a vector space V. Prove that there exists a nonzero vector $v \in V$ such that S(v) is a multiple of T(v)
- (3) Give an example of a matrix A whose characteristic polynomial is $(z-1)(z-5)^4$ and whose minimal polynomial is $(z-1)(z-5)^2$.
- (4) Let T be a linear operator on a 3-dimensional vector space V, and suppose that the eigenvalues of T are 6 and 8, and those are the only eigenvalues. Prove that there exist at least two different 2-dimensional vector subspaces $W_1, W_2 \subset V$ such that $T(W_i) = W_i$ for i = 1, 2.
- (5) If A is an $n \times n$ matrix such that $||Av|| \le 4||v||$ for all vectors $v \in \mathbb{R}^n$, then show that the eigenvalues of $A^T A$ are all less than or equal to 16.
- (6) Let T be a self-adjoint operator on an inner product space V. If there exists a non-zero vector v such that ||T(v) v|| > 3||v||, then show that T has an eigenvalue λ such that $|\lambda 1| > 3$.