
















Topology Preliminary Examination–August 2021

Instructions: solve 8 of the 10 problems given. For a passing grade, at least
6 problems must be given correct and complete solutions; including at least 2
from part I and 2 from part II.

PART I

1. Let the group G act by homeomorphisms on the Hausdorff space X, with
∼ the orbit equivalence relation: x ∼ y ↔ (∃g ∈ G)(y = gx). Let π : X → Y be
the quotient projection onto the space Y = X/ ∼.

(i) Show that if Y is given the quotient topology, π is an open map.

(ii) Let Γ = {(x, y) ∈ X ×X;x ∼ y} be the graph of ∼. Show that if Γ is a
closed subset of X ×X, then Y is Hausdorff (with the quotient topology.)

2. (i) Prove: A separable metric space cannot contain an uncountable dis-
crete set.

(ii) Show that C(R; [0, 1]) is not separable (with the uniform metric, d(f, g) =
supx∈R |f(x)− g(x)|).

3. Definition: A metric space (X, d) is proper if it has the Heine-Borel
property (bounded sets are precompact.)

(i) Let (X, d) be a proper metric space. Prove that X is complete, locally
compact and σ-compact.

(ii) Show that a metric space (X, d) is proper if and only if the distance
function to a point x 7→ d(x, x0) is a proper function on X.

4. Let X be locally compact Hausdorff and σ-compact, with compact ex-
haustion (Kn)n≥1. Define a metric on C(X) (real-valued continuous functions
on X) by:

ρ(f, g) =

∞∑
n=1

ρn(f, g), ρn(f, g) = min{ 1

2n
, sup
x∈Kn

|f(x)− g(x)|}.

Show that the topology induced by ρ on C(X) is equivalent to the topology of
uniform convergence on compact sets.

5. Definition: A family F of maps f : Rn → Rk is a locally Lipschitz family
if for all R > 0 we may find L > 0 (depending on R) so that, for all f ∈ F :

||x|| ≤ R, ||y|| ≤ R⇒ ||f(x)− f(y)|| ≤ L||x− y||.

Let F be a locally Lipschitz family of maps f ∈ C(Rn;Rk), which is also
bounded at each point (||f(x)|| ≤M(x) for all f ∈ F , with M(x) > 0 depending
on x, but not on f .) Show that any sequence fn ∈ F admits a subsequence
converging uniformly on compact sets to a map g ∈ C(Rn;Rk).

(You may assume the Arzelà-Ascoli theorem for maps from compact spaces.)
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PART II

6. Let X ⊂ RN be a compact smooth embedded submanifold (of dimension
m < N). Prove that every continuous map f : X → Sn ⊂ Rn+1 may be
approximated by a smooth map, homotopic to f . That is, for any ε > 0 there
exists ĝ : X → Sn smooth, homotopic to f , and ε-close to f in the sup distance.
(Include the proof that the maps are homotopic.)

Hint. First argue we can approximate f by a smooth map g : X → Rn+1.
Then normalize g, proving first that 0 6∈ g(X).

7. Let M be a smooth manifold, f : M → Rs be a C1 map, N ⊂ Rs

a submanifold of codimension strictly greater than dim(M). Show that for
almost every v ∈ Rs the translated image f(M)+v has empty intersection with
N . (That is, the set of v ∈ Rs for which the intersection is not empty has
measure zero in Rs.)

8. Show that if h : Sn → Sn is homotopic to a constant, then h has a fixed
point and h maps some point x to its antipode −x. (You may assume h is
smooth.) If the fact that two maps are homotopic is used in your proof, include
the homotopy between them.

9. (i) Define ‘homotopy equivalence’ and ‘deformation retraction’, and prove
that ifX deformation retracts to a subspace A ⊂ X, thenX and A are homotopy
equivalent. (Note r = iA ◦ r if r : X → X, r(X) = A, is a retraction; where
iA : A→ X is the inclusion map.)

(ii) Suppose there exists a deformation retraction from the space X to a
point x0 ∈ X. Show that for each open neighborhood U of x0, there exists a
second open neighborhood V ⊂ U of x0, with the property that the inclusion:

i∗ : π1(V, x0)→ π1(U, x0)

is trivial.

10. Let M be a compact orientable surface of genus 2. Prove there exists
f : M → S1 continuous, which does not lift to a continuous map from M to R.
(Here ‘lift’ refers to the exponential covering map R→ S1.)

You may use diagrams to explain the steps in your proof.
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Topology Preliminary Examination

August 2020

You may omit two questions from each part

Include justifications with your answers

Part A

1. Let X be a regular topological space, and let x ; y be distinct points of X . Prove that x ; y have

neighborhoods whose closures are disjoint.

2. Let X ; Y be topological spaces, with Y compact.

(a) (6 pts) Prove that the projection �1 W X � Y ! X ; .x ; y/ 7! x is a closed map.

(b) (4 pts) Let f W X ! Y be a function, not assumed to be continuous. The graph of f is the

following subset of X � Y : �f D f.x ; f .x// j x 2 Xg . Prove that if �f is closed in X � Y , then

f is continuous.

3. Let R be given the standard topology, and let A � R be the subspace A D
⋃

1

iD1

(

1
2iC1

; 1
2i

]

.

(a) (6 pts) Prove that A is locally compact, and that R n A is not locally compact.

(b) (4 pts) Find a locally compact subspace B of R such that A [ B is not locally compact.

4.

(a) (4 pts) Let X be a connected space such that each point of X has a path-connected neighborhood.

Prove that X is path-connected.

(b) (6 pts) Give an example of a connected space that is not path-connected.

5. Let .X ; d/ be a metric space, and let A � X be non-empty. Recall that given x 2 X , the distance

from x to A is d.x ; A/ D inffd.x ; a/ j a 2 Ag . For the remainder of this question it is assumed that

the non-empty subset A is compact.

(a) (4 pts) Prove that d.x ; A/ D d.x ; a/ for some a 2 A .

(b) (6 pts) Given � > 0 , define U.A ; �/ D fx 2 X j d.x ; A/ < �g . Prove that U.A ; �/ is an open

set containing A , and that if V is any open set containing A , then V contains U.A ; �/ for some

� > 0 .

6. Suppose that X is connected and Hausdorff, and that every proper closed subset of X containing

at least two points is disconnected. Prove that X n fxg is connected for every x 2 X .

7. Let p W X ! Y be a closed, continuous, surjective map such that p�1.fyg/ is compact for each

y 2 Y . Show that if X is Hausdorff, then so is Y .



8. Let .C ; d/ be a compact metric space, and let f W C ! C be a continuous function with no fixed

point, i.e. f .x/ ¤ x for each x 2 C . Prove that there exists ı > 0 such that d.x ; f .x// � ı for

each x 2 C .

Part B

9. Let X be the quotient space B2= � , where B2 is the unit disk
{

z 2 C
∣

∣ jzj � 1
}

and � is the

equivalence relation on B2 generated by

z � z e2�i=3 .jzj D 1/ ;

i.e. each point z of the boundary of B2 is identified with �.z/ , where � is rotation through 2�=3

about the center of B2 .

(a) (5 pts) Compute the fundamental group of X .

(b) (5 pts) Prove that every continuous map from X to the projective plane P 2 is nullhomotopic.

10.

(a) (4 pts) Prove that each covering map is an open map.

(b) (4 pts) Prove that each finite-sheeted covering map is a closed map.

(c) (2 pts) Give an example, with justification, of a covering map that is not a closed map.

11. Construct 4–sheeted covering maps pi W Ei ! S1 _ P 2 .i D 1; 2/ , with p1 regular, p2 not

regular and each Ei connected. Explain why your maps are covering maps and why they have the

required properties.

12. Let X be a compact metric space, and let p W eX ! X be a covering map. Prove that for some

� > 0 every ball B.x ; �/ in X is evenly covered.

13. Let X ; Y be topological spaces with respective basepoints x0 ; y0 .

Prove that �1.X � Y ; .x0 ; y0// is isomorphic to �1.X ; x0/ � �1.Y ; y0/ .



January 7, 2019

University of Tennessee

Topology Preliminary Examination

You may omit two questions from each part.

Part A

Question 1. Let X be an infinite set equipped with the finite complement topology. Prove
that every continuous map f : X → R is constant.

Question 2. Prove that the subspaces

X = ([−1, 1]× {0}) ∪ ({0} × [−1, 1]) and Y := ([−1, 1]× {0}) ∪ ({0} × [0, 1])

of R2 are not homeomorphic.

Question 3. Let A and B be disjoint compact subspaces of a Hausdorff space X. Prove
that there exist disjoint open sets U, V ⊂ X with A ⊂ U and B ⊂ V .

Question 4. Prove that every separable metric space is second countable. Deduce that
the Sorgenfrey line R` is not metrizable.

Question 5. Let D be any countable subset of R2. Prove that R2 \D is path connected.

Question 6. Prove that Q ⊂ R, equipped with the subspace topology induced from the
standard topology on R, is not locally compact.

Question 7. Prove that the one-point compactification of N ⊂ R (with the subspace
topology) is homeomoephic to {0} ∪ {1/n : n ∈ N} ⊂ R (with the subspace topology).

Question 8. Given a ∈ R \ {0}, define R/aZ as the quotient of R by the equivalence
relation

x ∼ y ⇐⇒ y = x+ ka for some k ∈ Z .

Show that R/aZ is homeomorphic to S1 .



Part B

Question 9. Let A be a path connected subspace of Rn, let Y be a path connected
topological space and let h : A → Y be a continuous map. Show that if h extends to a
continuous map ĥ : Rn → Y , then the induced map h∗ : π1(A)→ π1(Y ) is trivial.

Question 10. Describe the three double coverings of RP 2 ∨ S1 (not necessarily by an
explicit formula; a diagram may suffice) and determine which (if any) is regular.

Question 11. Prove that there are no covering maps from S2 to S1 × S1 or from S1 × S1

to S2.

Question 12. Let X be the union S2 ∪ L of the standard sphere S2 + {(x, y, z) ∈ R3 :
x2 + y2 + z2 = 1} ⊂ R3 with the vertical segment L + {(0, 0, z) : |z| ≤ 1}. Determine
π1(X, b), where b := (0, 0, 1).

Question 13. Determine the fundamental group of the Klein bottle RP 2#RP 2. Justify
your answer.




































































