TOPOLOGY PRELIMINARY EXAM, AUGUST 2023
Solve cight items from part 1, and cight from part 2. Justify all your claims,
in as much detail as time allows. All spaces mentioned are assumed Hausdorft.

PART 1

1. Let f: X — Y be a continuous, surjective, closed map. Prove:

(i) For cach y € Y and any U C X open neighborhood of the preimage
f~(y), there exists V C Y open neighborhood of y so that f~1(V) c U.

(ii) Let y € Y, let U C X be an open neighborhood of f71(y). Then f(U)
contains an open neighborhood V C Y of .

2. (i) Let X be a metric space. Prove: If cach f, : X — R is uniformly
continuous on X and f,, — f uniformly on X, then f is uniformly continuous
on X.

(ii) Prove: There is no sequence of polynomials converging to sin(1/x), uni-
formly on the open interval (0,1).

3. (i) Let p: X — Y be a surjective local homeomorphism. If X is compact,
prove that p is a covering map with finite fibers.

(ii) Give an example of a surjective local homeomorphism that is not a
covering map. (And explain why both facts are true for your example.)

4. (i) Define ‘homotopy equivalent spaces’ and ‘deformation retraction’, and
show that if X deformation retracts to a subspace A € X, then X and A are
homotopy equivalent.

(ii) Show that the figure-cight space X and the theta-space Y are homotopy
cquivalent, and that they are not homeomorphic.

X ={(z,9) eR*%2* + (y — 1)* = U {(z,9) eR*2° + (y + 1)> = 1}.

Y = {(z,y) €eR?: 2% +y* = 1} U {(2,0) e R* -1 <z < 1}.

5. (i) Prove that if X is a compact connected manifold with finite funda-
mental group, any continuous map f : X — T (the n-dimensional torus) is
homotopic to a constant.

(ii) Let M be the compact orientable surface of genus 2. Prove there exists
f: M — S' continuous, not homotopic to a constant.
Hint: first show that M retracts to the figure-cight space.



PART 2

6. (i) Prove: The space of rank one 2 x 2 real matrices (that is, nonzero

matrices with determinant zero) is a 3-dimensional submanifold V of Maya(R) =
RY.

(ii) Find the tangent space T4V of V at the matrix A € V' given, expressed

as a subspace of Mayo(R).
10
A= (0 0) (1)

7. (i) Prove: If X is a compact connected manifold with boundary, there
is no smooth map X — 9X that is the identity on X (that is, X is not a
smooth retract of X.)

Hint: Sard’s theorem.

(ii) Let X be an oriented manifold, f : X' — R a smooth function with 0 € R
as a regular value. Prove that the submanifold Z = f~1(0) of X is orientable.

8. (i) Denote by B the closed unit ball in R”, with boundary S"~1. Let
f: B — R"™ be a continuous map, such that f(S"~!') € B. Prove that f has a
fixed point in B.

Hint: Consider po f, where p : R® — B is the continuous map defined as
the identity on B, and as the nearest-point projection to ™~ on R™ \ B.

(ii) Let f: S™ — S™ be a continuous map such that || f(z) — z|| < 2 for all
x € S™ (for the usual norm in R™*1). Prove that f is surjective.

9. (i) Show that the degree of the antipodal map a @ S™ — 5™, a(x) = —,
is (—1)n+L

(ii) Prove: any (smooth) map S™ — S™ with degree different from (—1)
must have a fixed point.

mn+1

10. (i) Let X be a compact smooth manifold. Prove: given any continuous
map f: X — S™ C R"! and any € > 0, there exists g : X — S™ smooth so
that sup,. x ||f(z) — g(z)|| < e

Hint. Explain why we may approximate f by a smooth map h: X — RrHL
Then show the normalization of A (taking values on §™) is still close to f.

(ii) Prove that if € is small enough, the approximation ¢ in (i) is homotopic

to f.

Hint: Consider a retraction r : N, — S™ from a tubular neighborhood N, of
S™ in R,



Topology prelim January 2023

Do 4 Problems from each part.
PART 1
Problem 1.
(i) Let f: M — N be a continuous map between non-compact manifolds. Show that if f is
proper (def: preimage of compact is compact), then f is a closed map.

(ii) Prove that if f: M — R"™ is a smooth injective immersion and ¢ : M — Ry is a smooth
proper function, then g(z) = (f(x), ¢(z)) defines a smooth immersion from M to R"*!, which
in addition is a proper map.

Problem 2.
Let f: X — Y be a function between two topological spaces and assume that X is metrizable.

(a) Show that if A C X ant x € A, then there exists a sequence x,, € A such that z,, — z.
(b) If for any convergent sequence x,, — = € X, the sequence f(x,) converges to f(z), then f
is continuous.

Problem 3.

Let M be a smooth manifold, f : M — R* be a C' map, and N C RF a submanifold of
codimension strictly greater than dim M. Show that for almost every v € R* (i.e., except of a
set of v of measure zero) the translated image f(M) + v has empty intersection with N.

Problem 4.
(i) Let Q = {ry,79,...} be an enumeration of the rationals, and let A;, = (r; — ?%, T; + ﬁ)

for each i, 7 > 1. Show that the set
A= (U

jzlizl
is a residual set (countable intersection of open dense sets) and has measure zero.
(ii) A subset of R is of first category if it is contained in a countable union of closed sets with
empty interior. Prove that any set S of real numbers may be written as the disjoint union of a
set of measure zero and a set of first category. (Hint: part (i).)

Problem 5.
Let X be a non-compact manifold, X = U;>1X; a compact exhaustion(i.e. X; C X compact and
X; C int(X;4+1)). Suppose (Y,d) is a bounded, complete metric space, with d(y,y") < 1 for all
v,y € Y. Consider the metric on the space of all functions f: X — Y:
— 1
= — 8 d i xr)).
p(f.9) Z 3 sup d(f(2). 9(x))
i—1 :
Let {fno}nen € C(X,Y) and f : X — Y. Show that f, — f uniformly on compact sets if and
only if p(f,., f) — 0.

Problem 6.

Let (Y,d) be a bounded metric space (d(y,y") < 1, for all y,3' € V), and F be a totally bounded
subset in C(X,Y) (the space of continuous functions from X to Y) with respect to the uniform
metric dy,(f, g) := sup,ex d(f(x),g(z)). Then F is equicontinuous.

Hint: Recall that F totally bounded means that for any € > 0 there exist a finite number of functions
fi € C(X,Y),i=1,...,n, such that F C U™ B%(fi, ¢), where

B (fi,e) ={g€C(X,Y) :dy(fi,g) <€}



PART II

Problem 1. Let X be the union of k distinct lines passing through the origin in R®. Compute
the fundamental group of R\ X.

Problem 2.
(i) Let p: X — Y be a covering map. If X is path connected and Y is simply connected

show that p has to be a homeomorphism.
(ii) Prove that every continuous map from S? to 72 is nullhomotopic.

Problem 3.

(i) If f: S' — S™ is continuous, the Stone-Weierstrass theorem implies that, for any € > 0,
there exists h : ST — R™"! smooth, so that |h(z) — f(z)| < ¢, for all z € S1. Prove that, for e
sufficiently small, the map g(z) = ﬁ% is a smooth map to S", freely homotopic to f.

(ii) Using Sard’s theorem and part (i), prove that for any n > 1 the sphere S™ is simply
connected.

Problem 4.
(i) Let v be a tangent vector field on S™ C R""1. (That is, (v(z),z) = 0, for all z € S™.) Show
that if v(z) # 0 for all z, the map of S™:

x +v(x)

@) = )

is smooth, homotopic to the identity, and has no fixed points.

(ii) Show that the degree of the antipodal map of S™ is (—1)"*!. Explain why this implies
the situation in part (i) can only happen if n is odd. (Hint: See also problem 5(a)).

Problem 5.

(a) Show that if f has no fixed points, then f is homotopic to the antipodal map.

(b) Let f:S™ — S™ be a continuous map such that ||f(z) — z|| < 1 for all z € S™. Prove that
f is surjective.

Problem 6.

For X a compact manifold, Y a manifold with dim(Y) > 1, Z C Y a submanifold of codimen-
sion equal to dim(X) and f: X — Y a smooth map, denote by I5(f, Z) the mod 2 intersection
index of f with Z.

(i) If Y is contractible, show that I1(f, Z) = 0.

(i) f Y = S*, show that Ir(f,Z) = 0.



Topology prelim August 2022

Do 4 Problems out of cach part.

PART 1:

Problem 1.

Let X be a regular topological space (we assume that single points are closed sets). Show
that for any x € X and open neighborhood U of z, there exists an open neighborhood V
of = such that V C U. Deduce that every pair of points of X have ncighborhoods whose
closures are disjoint.

Problem 2.

(i) Consider the set of functions f : R — R with the topology of pointwise conver-
gence. Show that it is not metrizable.

(ii) Let f,, : X =Y be a sequence of continuous functions from a topological space X
to a metric space Y. If (f,,) converges uniformly to f, prove that f is continuous.

Problem 3.

Let Ay, Ay, A3 be compact sets in R?. Prove that there is one plane P C R? that simulta-
ncously divides cach A;, i = 1,2, 3, into two picces of equal measure.

Hint: Use the version of Borsuk-Ulam theorem: For f : S> — R? continuous, there exists x € S?
such that f(z) = f(—x). It will be helpful, for each v € S?, to define three planes orthogonal to
v that split the A;’s into equal pieces.

Problem 4.

(a) Let p : X — Y be a covering map. If X is path connected and Y is simply
connected show that p has to be a homeomorphism.
(b) Prove that every continuous map from S? to 72 is nullhomotopic.

Problem 5.
Consider a function f : R — R and let D be the set of points at which f is continuous.

(i) Show that D has to be a G5 set (countable intersection of open sets).
(ii) Show that D cannot be a countable dense subsct of R.

Problem 6: A space X is said to be contractible if the identity map of X is homotopic
to a constant map.

(a) Show that any convex open set in R™ is contractible.

(b) Show that a contractible space is path connected.

(¢) Show that if Y is contractible, then all maps f : X — Y are homotopic to one
another.

(d) Show that if X is contractible and Y is path connected, then all maps f: X =Y
arc homotopic to one another.



PART 2:

Problem 1.

(a) Let X and Y be two submanifolds of R™. Show that for almost every @ € R* X +a
intersects Y transverscely.

(b) Let Z be the preimage of a regular value y € Y under the smooth map f: X — Y.
Show that the kernel of df, : T,(X) — T,(Y) at any = € Z is precisely T,(Z).

Problem 2.

(a) Let f: X — Y be asubmersion and U an open sct of X. Show that f(U) is open
inY.

(b) If X is compact and Y is connected, show that cvery non trivial submersion
f: X =Y is surjective.

Problem 3
Let X be a compact manifold with boundary. Show that there is no smooth map f: X —
0X which is the identity on the boundary 0X (i.c. df = id).

Problem 4
(a) Let 3. = {(z,y, 2) € R*|z?+y* —2? = c}. Show that if ¢ # 0 then X is a manifold.
Show that if ¢ = 0 then X; is not a manifold.
(b) Show that {(z,y,2): (z — 1) + y* + 2% = 1} N X, is a 1-manifold.

Problem 5: If S* has a vector ficld with no zeros then the antipodal map is homotopic
to the identity.

Problem 6:

(a) Let Y be a contractible manifold with dimY > 1. Show that Ir(f, Z) = 0 for all
closed proper submanifolds Z C Y (proper meaning that Z is not identically equal
toY)and f: X — Y with X a compact and satisfying dim X + dim Z = dim Y.

(b) Let X be a compact manifold with dim X € (0, k), £ > 2, and consider a smooth
map f : X — S* Show that for all closed submanifolds Z C S* such that
dim X + dim Z = k we have I(f, Z) = 0.



TOPOLOGY PRELIMINARY EXAM- JANUARY 2022

Instructions. Solve cight of the ten problems proposed, including as much
detail as time allows.

PART ONE

1. Definition: A metric space (X, d) is proper if it has the Heine-Borel
property (bounded sets are precompact.)

(i) Let (X, d) be a proper metric space. Prove that X is complete, locally
compact and g-compact.

(ii) Show that a metric space (X,d) is proper if and only if the distance
function to a point = + d(x, z¢) is a proper function on X. (Recall a continuous
map is proper if the preimage of compact sets is compact)

2. (i) Prove: A connected, locally path connected space X is path connected.
In particular, connected open sets in R™ are path connected.

(ii) Prove: Any collection U of pairwise disjoint open subsets of R™ is count-
able.

3. Let the group G act by homeomorphisms on the Hausdorff space X, with
~ the orbit equivalence relation: =z ~y < (dg € G)(y = gz). Let m: X — Y be
the quotient projection onto the space ¥V = X/ ~.

(i) Show that if ¥V is given the quotient topology, 7 is an open map.

(ii) Let T' = {(z,y) € X x X;z ~ y} be the graph of ~. Show that if T" is a
closed subset of X x X, then YV is Hausdorff (with the quotient topology.)

4. Let (Y,dy) be a complete metrie space, X a set, Y¥ the set of all
functions f : X — Y. The uniform metric on Y¥ associated to dy is defined
as:

d(f,g) = S}p min{dy (f(z), g(x)),1}.

(i) Show that (Y, d) is complete.

(ii) If X is a topological space, (Y, dy) a complete metrie space, show that
the set C(X,Y) of continuous functions, with the uniform metric, is a complete
metric space.

5. (i) Prove: If each f, : X — E (X metric space, E Banach space) is
uniformly continuous on X and f,, — f uniformly on X, then f is uniformly

continuous on X.

(ii) Use (i) to show that there is no sequence of polynomials converging to
1/z uniformly on the open interval (0, 1) (justify cach claim in the argument).



PART TWO

1. Let p: RF — R be a homogencous polynomial of degree d in k variables:
o g . k
p(tr) =tp(x); teR,ze R

(i) Prove that if a # 0 the set M, = {z € R¥;p(z) = a} (if non-empty) is a
smooth hypersurface in RF (codimension 1 submanifold) .
Hint: use the Euler identity:

k dp
Z :nqi‘—;r =dp
dx;

i=1

to show any a # 0 is a regular value of p.
(i1) Prove that all M, with a > 0 are diffcomorphic to one another.

2. (i) Let V be a finite-dimensional real vector space, T'€ L(V), A C V xV
the diagonal subspace, I'r € V x V the graph subspace of T. Then:

'+ M A < 1 is not an cigenvalue of T

(M is the notation for ‘transversal’.)
(ii) In this case, what is the dimension of the intersection subspace I'p N A?

(Justify.)

3. (i) Define ‘orientable manifold’.

(ii) Let X be an oriented manifold, f : X' — R a smooth function with 0 € R
as a regular value. Prove that the submanifold Z = f~1(0) of X is orientable.

4. (i) Prove that every continuous map from RJ 2 to T? is nullhomotopic.

(ii) Let M be the compact orientable surface of genus 2. Prove there exists
f: M — S' continuous, not homotopic to a constant.

Hint: To begin the argument, show (with the help of clear sketches) that M
admits a continuous retraction to St v 8!, the “figure cight’ space.

5. (i) Show that if A : S™ — S™ is nullhomotopic, then h has a fixed point
and h maps some point x to its antipode —z.

(ii) Let f: S™ — S™ be a continuous map such that ||f(z) — z|| < 1 for all
x € S™ (for the usual norm in R**1.) Prove that f is surjective.



Topology Preliminary Examination—August 2021

Instructions: solve 8 of the 10 problems given. For a passing grade, at least
6 problems must be given correct and complete solutions; including at least 2
from part I and 2 from part II.

PART 1

1. Let the group G act by homeomorphisms on the Hausdorff space X, with
~ the orbit equivalence relation: z ~y <> (3g € G)(y = gx). Let 7 : X = Y be
the quotient projection onto the space Y = X/ ~.

(i) Show that if Y is given the quotient topology, 7 is an open map.

(ii) Let ' = {(x,y) € X x X;z ~ y} be the graph of ~. Show that if I is a
closed subset of X x X then Y is Hausdorff (with the quotient topology.)

2. (i) Prove: A separable metric space cannot contain an uncountable dis-
crete set.

(ii) Show that C'(R; [0, 1]) is not separable (with the uniform metric, d(f, g) =
supep |f(2) = g(z)])-

3. Definition: A metric space (X,d) is proper if it has the Heine-Borel
property (bounded sets are precompact.)

(i) Let (X, d) be a proper metric space. Prove that X is complete, locally
compact and o-compact.

(ii) Show that a metric space (X,d) is proper if and only if the distance
function to a point z — d(x,zg) is a proper function on X.

4. Let X be locally compact Hausdorff and o-compact, with compact ex-
haustion (K,,)n>1. Define a metric on C(X) (real-valued continuous functions
on X) by:

pU19) = D pu(.9). pulf.g) = minfo, sup [£(z) — g(a)l}.
n—1 rzeKy,

Show that the topology induced by p on C(X) is equivalent to the topology of
uniform convergence on compact sets.

5. Definition: A family F of maps f : R" — RF is a locally Lipschitz family
if for all R > 0 we may find L > 0 (depending on R) so that, for all f € F:

|zl < R [lyll < R = |[f(x) = FW)I| < Lz —yl|.

Let F be a locally Lipschitz family of maps f € C(R";RF), which is also
bounded at each point (||f(x)|| < M(x) for all f € F, with M (z) > 0 depending
on x, but not on f.) Show that any sequence f,, € F admits a subsequence
converging uniformly on compact sets to a map g € C(R™; RF).

(You may assume the Arzela-Ascoli theorem for maps from compact spaces.)



PART II

6. Let X C RY be a compact smooth embedded submanifold (of dimension
m < N). Prove that every continuous map f : X — S" C R""! may be
approximated by a smooth map, homotopic to f. That is, for any ¢ > 0 there
exists g : X — S™ smooth, homotopic to f, and e-close to f in the sup distance.
(Include the proof that the maps are homotopic.)

Hint. First argue we can approximate f by a smooth map ¢ : X — R*T1,
Then normalize g, proving first that 0 & g(X).

7. Let M be a smooth manifold, f : M — R® be a C! map, N C R*®
a submanifold of codimension strictly greater than dim(M). Show that for
almost every v € R® the translated image f(M)+v has empty intersection with
N. (That is, the set of v € R® for which the intersection is not empty has
measure zero in R®.)

8. Show that if h: ™ — S™ is homotopic to a constant, then h has a fixed
point and h maps some point x to its antipode —z. (You may assume h is
smooth.) If the fact that two maps are homotopic is used in your proof, include
the homotopy between them.

9. (i) Define ‘homotopy equivalence’ and ‘deformation retraction’, and prove
that if X deformation retracts to a subspace A C X, then X and A are homotopy
equivalent. (Note r = iqorif r: X — X, r(X) = A, is a retraction; where
ia: A — X is the inclusion map.)

(ii) Suppose there exists a deformation retraction from the space X to a
point xp € X. Show that for each open neighborhood U of z(, there exists a
second open neighborhood V' C U of xy, with the property that the inclusion:

ix : m(V,20) = m (U, 20)

is trivial.

10. Let M be a compact orientable surface of genus 2. Prove there exists
f: M — S' continuous, which does not lift to a continuous map from M to R.
(Here ‘lift’ refers to the exponential covering map R — S1.)

You may use diagrams to explain the steps in your proof.



Topology Preliminary Examination

August 2020

You may omit two questions from each part

Include justifications with your answers

1. Let X be aregular topological space, and let x, y be distinct points of X . Prove that x, y have
neighborhoods whose closures are disjoint.

2. Let X, Y betopological spaces, with ¥ compact.
(a) (6 pts) Prove that the projection 7; : X XY — X, (x, y) + x is a closed map.

(b) 4pts) Let f: X — Y be a function, not assumed to be continuous. The graph of f is the
following subsetof X xY : Iy = {(x, f(x))|x € X} . Provethatif I'r isclosedin X x Y , then
f is continuous.

3. Let R be given the standard topology, and let A C R be the subspace A = Ufil (ﬁ , 21—1] .
(a) (6 pts) Provethat A islocally compact, and that R \ A is not locally compact.

(b) (4 pts) Find a locally compact subspace B of R suchthat A U B is not locally compact.

4.

(a) (4pts) Let X beaconnected space such that each point of X has a path-connected neighborhood.
Prove that X is path-connected.

(b) (6 pts) Give an example of a connected space that is not path-connected.

5. Let (X, d) be ametric space, and let A C X be non-empty. Recall that given x € X, the distance
from x to Ais d(x, A) = inf{d(x, a) | a € A}. For the remainder of this question it is assumed that
the non-empty subset A is compact.

(a) (4pts) Provethat d(x, A) =d(x, a) forsome a € A.

(b) (6pts) Given € > 0, define U(A, €) ={x € X | d(x, A) < ¢€}. Provethat U(A4, €) is an open
set containing A, and that if V' is any open set containing A , then V' contains U(A, €) for some
€>0.

6. Suppose that X is connected and Hausdorff, and that every proper closed subset of X containing
at least two points is disconnected. Prove that X \ {x} is connected for every x € X .

7. Let p: X — Y beaclosed, continuous, surjective map such that p~!({y}) is compact for each
y € Y . Show thatif X is Hausdorff, thensois Y .



8. Let (C, d) be acompact metric space, and let f : C — C be a continuous function with no fixed
point, i.e. f(x) # x foreach x € C . Prove that there exists § > 0 such that d(x, f(x)) > § for
each x e C.

9. Let X be the quotient space B2/ ~, where B? is the unitdisk {z € C | |z| <1} and ~ is the
equivalence relation on B? generated by

2~z (2l =1)
i.e. each point z of the boundary of B? is identified with p(z), where p is rotation through 27/3
about the center of B2 .

(a) (5pts) Compute the fundamental group of X .

(b) (5pts) Prove that every continuous map from X to the projective plane P2 is nullhomotopic.

10.
(a) (4 pts) Prove that each covering map is an open map.
(b) (4 pts) Prove that each finite-sheeted covering map is a closed map.

(c) (2pts) Give an example, with justification, of a covering map that is not a closed map.

11. Construct 4-sheeted covering maps p; : E; — S'v P? (i = 1,2), with p; regular, p, not
regular and each E; connected. Explain why your maps are covering maps and why they have the
required properties.

12. Let X be a compact metric space, and let p : X > X bea covering map. Prove that for some
€ > 0 every ball B(x, €) in X is evenly covered.

13. Let X, Y be topological spaces with respective basepoints xo, Yo
Prove that w1 (X X Y, (xo, yo)) isisomorphicto m1(X , xo) x m1(Y, yo) .



January 7, 2019

University of Tennessee
Topology Preliminary Examination

You may omit two questions from each part.

PArRT A

Question 1. Let X be an infinite set equipped with the finite complement topology. Prove
that every continuous map f : X — R is constant.

Question 2. Prove that the subspaces
X = ([=1,1) x {0}) U ({0} x [~L.1)) and ¥ = ([=1,1] x {0}) U ({0} x [0,1])

of R? are not homeomorphic.

Question 3. Let A and B be disjoint compact subspaces of a Hausdorff space X. Prove
that there exist disjoint open sets U,V C X with AC U and B C V.

Question 4. Prove that every separable metric space is second countable. Deduce that
the Sorgenfrey line R, is not metrizable.

Question 5. Let D be any countable subset of R?. Prove that R?\ D is path connected.

Question 6. Prove that Q C R, equipped with the subspace topology induced from the
standard topology on R, is not locally compact.

Question 7. Prove that the one-point compactification of N C R (with the subspace
topology) is homeomoephic to {0} U{1/n:n € N} C R (with the subspace topology).

Question 8. Given a € R\ {0}, define R/aZ as the quotient of R by the equivalence
relation
r~y<=y=x+ka forsome keZ.

Show that R/aZ is homeomorphic to S* .



PArT B

Question 9. Let A be a path connected subspace of R”, let Y be a path connected
topological space and let h : A — Y be a continuous map. Show that if h extends to a
continuous map h : R” — Y, then the induced map h, : m(A) — m (YY) is trivial.

Question 10. Describe the three double coverings of RP? v S (not necessarily by an
explicit formula; a diagram may suffice) and determine which (if any) is regular.

Question 11. Prove that there are no covering maps from S? to S* x S! or from S* x S!
to S2.

Question 12. Let X be the union S? U L of the standard sphere S? = {(z,y,2) € R? :
2?2 +y* + 22 = 1} C R3 with the vertical segment L = {(0,0,2) : |z| < 1}. Determine
m(X,0), where b := (0,0,1).

Question 13. Determine the fundamental group of the Klein bottle RP?#RP?. Justify
your answer.



August 13, 2018

University of Tennessee
Topology Preliminary Examination

You may omit two questions from each part.

PART A

Question 1. Denote by R; the set of real numbers equipped with the finite complement
topology. Prove the following statements.

(a) Ry is not Hausdorff.
(b) Every subset of Ry is compact.
(c) Every continuous map f : Ry — R is constant.

Question 2. Let X and Y be connected spaces and let A and B be proper subsets of X
and Y, respectively. Show that (X x Y’} \ (A x B) is connected.

Question 3. Prove that RN, equipped with the product topology, is not locally compact.
Question 4. Prove that a connected, locally path connected space is path connected.

Question 5. (a) Prove that every separable metric space is second countable.
(b) Prove that the Sorgenfrey line, R,, is not second countable.
(c) Deduce that R, is not metrizable.

Question 6. Prove that the quotient of the circle S* C C obtained by identifying 1 with
—1 is homeomorphic to the figure-8 space,

X:={e’-i:0e0,2a]}u{e’ +i:0 €[0,2n]} CC.

Question 7. Let (Y,d) be a complete metric space, and let X be a set. Recall that the
uniform metric d on YX associated to d is defined by

d(f.g) = sup min{d(f(z),g(z)),1}.

(a) Show that (YX,d) is complete.
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(b) Let X be a topological space and let (Y,d) be a complete metric space. Show that
the set C(X,Y) of continuous functions from X to Y, equipped with the associated
uniform metric d, is complete.

Question 8. Prove that R" is paracompact.

PART B

Question 9. Let X C R3 be the union of k distinct lines through the origin. Prove that
71 (R3\ X) is a free group on 2k — 1 generators.

Question 10. (a) Find a group G of homeomorphisms of S? which acts properly discon-
tinuously and such that RP? & §%/G.
(b) Using part (a), determine ;(RP?, ).

Justify your answers.

Question 11. (a) Describe a covering map p : E — B, where E consists of a round
sphere in R3 tangent to two distinct, disjoint round circles and B is the wedge
product of RP? with S! (not necessarily by an explicit formula; a diagram may be
sufficient).

(b) Assign a suitable basepoint e € E and determine the subgroup p,.m (E,e) of
1I’1(B ap(e))
(c) Decide whether or not the covering is regular.

Justify your answers for parts (b) and (c).
Question 12. Prove that every continuous map from RP? to T2 is nullhomotopic.

Question 13. Prove one of the following two statements:

(A) There is no retraction from the closed two-ball B? to its boundary, S!.
(B) There is no smooth retraction from a smooth n-manifold-with-boundary, M, to its
boundary, M.

Deduce that every smooth map f : B2 — B? has a fixed point.



Topology Preliminary Examination Friday January 5, 2018

You may omit two questions from each part
Part A

1. Characterize those topological spaces X having the property that the diagonal
A={xxx|x€X}

is an open subset of X x X .

2. Prove that the real line with the standard topology is connected.

3. Let 7, 7" be two topologies on a set X .

(i) Suppose that T C 7" . What does compactness of X under one of these topologies imply
about compactness under the other?

(ii) Show that if X is compact Hausdorff under both T and 7", then either T, 7’ are equal
or they are not comparable.

4. Let X be a metric space.

(a) Suppose that for some € > 0 every e-ball in X has compact closure. Show that X is
complete.

(b) Suppose that for each x € X there is an € > 0 such that the ball B(x,€) has compact
closure. Show by means of an example that X need not be complete.

5. Let p:X — Y beaclosed continuous surjective map, such that p~1({y}) is compact for
each i € Y. Show thatif Y is compact, thensois X.

6. Let Ry be the real line with the lower limit topology. Prove that R; is not metrizable.
(Hint: Consider whether Ry has the properties “separability”, “second countability”.)

7. Prove or disprove each of the following.

(i) If X is a complete metric space that is also bounded, then X is compact.

(i) If A is a closed subspace of a limit point compact space X, then A is limit point compact.
(ili) A dense subspace of a complete metric space is complete.

8. Determine whether R% is connected in the uniform topology.
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Part B

9. Let p: E - B be a covering map; let B be connected. Show that if p~1(by) has k
elements for some b € B, then p~'(b) has k elements for every b € B.

10. Let B = P2V P2, ie. B is theresult of gluing together two copies of the projective plane
P? at a single point. ‘

(i) Find a connected three-sheeted covering space of B that is not regular, and use it to show
that the fundamental group of B is not commutative,

(i) Find a connected, regular, infinite sheeted covering space of B, and use it to show that
the fundamental group of B is infinite.

11. Compute the fundamental group of the Klein bottle, either (i) using the Seifert-van Kam-
pen theorem, or (ii) considering the Klein bottle as the quotient of the Euclidean plane under
a suitable group action.

12. Show that if h: S! — S! is nullhomotopic, then h has a fixed point and h maps some
point x to its antipode —x.

13. Let X =p-; Xn, where each X, is a simply connected open subspace of X, and where
Xn C Xn+1 foreach n = 1. Show that X is simply connected.



Topology Preliminary Examination Friday August 18, 2017

You may omit two questions from each part

Part A

1. Let X be a metric space, and let f be a function from X to a topological space Y with the
following property: whenever (x,) is a sequence in X converging to x € X, the sequence
(f(xn)) convergesto f(x). Prove that f is continuous.

2. Define the terms connected space, path connected space.

Let X =[0,1] X [0,1], with the lexicographic (dictionary) order topology.

(i) Prove that X is connected (you may assume that X has the least upper bound property).
Hint: Adapt the proof that R is connected.

(ii) Prove that X is not path connected.

3. Let X be a countable product of copies of [0,1] with the uniform topology. Prove that
X is not locally compact.

4. Prove or disprove each of the following.

(@ Let f:X — Y be amap of topological spaces that is continuous and surjective. If X is
locally compact, then sois Y.

() Let f:X — Y be amap of topological spaces that is continuous, open and surjective. If
X is locally compact, then sois Y.

5. Let X, Y be spaces with X locally compact Hausdorff, and let (X, Y) have the compact-
open topology. Show that the evaluation map e : X x €(X,Y) — Y, e(x,f) = f(x) is
continuous.

6. For each of the following, either provide an example with justification, or prove that no
example exists.

(@) A metric space X that is not second countable.

(b) A metric space X that is not first countable.

(c) A metric space X that is not normal.

7. Let X be the Hilbert cube I, a countable product of copies of I = [0, 1] endowed with
the product topology. Assuming that each /" (n = 1,2,...) has the fixed point property,
prove that X has the fixed point property. (A space X is said to have the fixed point property
if each continuous function f : X — X has a fixed point.)

8. Let A, B be proper subsets of X, Y respectively. If X and Y are connected, show that
(XxY)\ (AxB) is connected.



Part B

9. Let B be a compact space, and let p : E — B be a covering map. Show that if p~1(b) is
finite for each b € B, then E is compact.

10. Let X be the union of the three coordinate axes in R3. Compute m;(R3 \ X).

11. Let X = P2 v S!, with basepoint X, taken to be the point where P2 and S! are glued
together.

(i) Find two inequivalent 3-fold connected covering spaces of X, illustrating each by means
of a rough sketch.

(i) Let p;:X; - X (i=1,2) be the covering maps of part (i) of this question. Determine
whether each covering space X; is regular, and specify the image of each pix in 11(X, X0) .

12. Compute the fundamental group of the Klein bottle, either (i) using the van Kampen
theorem, or (ii) considering the Klein bottle as the quotient of the Euclidean plane under a
suitable group action.

13. Let 7 be a prime number. Let X be a path connected space whose fundamental group
is cyclic of order 7, and suppose that p : X — X is an (1 + 1)-sheeted covering map. Show
that X is not path connected, and that some path component of X is homeomorphic to X .



Topology Preliminary Examination Monday January 9, 2017

You may omit two questions from each part

1. Let X, X’ be topological spaces whose underlying sets are equal, and whose topologies
are Q, Q' respectively. Assume that Q' O Q and that both spaces are T, . Consider the
properties “Hausdorff”, “regular”, “normal”. For each of these properties, if one of the spaces
has the property, what does that imply about the other space?

2. Let X be a countably infinite space with the discrete topology. Show that the one-point
compactification of X is homeomorphic with the subspace {0} U {1/n|n € Z,} of R.

3. Let A, B be disjoint compact subspaces of the Hausdorff space X . Show that there exist
disjoint open sets U, V containing A, B respectively. Hint: First consider the case where B
is a point.

4.

(a) Show that every metrizable space with a countable dense subset has a countable basis.
(b) Use part (a) of this question to show that the real line with the lower limit topology is not
metrizable.

5.

(a) Prove the Intermediate Value Theorem: Let X be a connected space, let Y be an ordered
set with the order topology, and let f: X — Y be a continuous function. If a, b are points
of X and r € Y satisfies f(a) < v < f(b), then there exists ¢ € X with f(c)=7.

(b) Let Y =[0,1] x[0,1] be given the dictionary (lexicographic) order topology. Show that
Y is not path connected.

6. Let p:X — Y be a closed continuous surjective map such that p~!(y) is compact for
each y € Y. (Such a map is called a perfect map.) Show that if X is Hausdorff, thensois Y.

7. For each of the following, either provide an example with justification, or prove that no
example exists.
(@) A metric space X that is not second countable.

(b) A metric space X that is not first countable.
(c) A metric space X that is not normal.

8.
(a) Define the terms “Cauchy sequence in a metric space”, “complete metric space”.

(b) Show that for a metric space X, if each Cauchy sequence in X has a convergent subse-
quence, then X is complete.

(c) Show that for a metric space X, if there exists € > 0 such that each €-ball in X has
compact closure, then X is complete.



Part B

9. .

(a) Prove that each covering map is an open map.

(b) Prove that each finite-sheeted covering map is a closed map.

(c) Give an example, with justification, of a covering map that is not a closed map.

10.

X Y

Nlustrated are subsets X, Y of the plane; X consists of a circle with an inscribed triangle,
and Y consists of a triangle with a circle touching each of its vertices.

(@) Describe coveringmaps p: X — S!v S!,q:Y — S! vS!. (You do not need to provide
explicit formulae for p, g, but describe how the various arcs constituting X, Y are mapped
into S' v S!.)

(b) Define the term regular covering map, and determine whether the covering maps p, q
of part (a) are regular.

(c) Assigning suitable basepoints to the spaces concerned, determine the subgroups
P« (T(X)), g« (m(Y)) of m(S! v S!),where p, g are the covering maps of part (a).

11. Let X, Y be spaces with respective basepoints X, yo. Prove that (X XY, xo X y0)
is isomorphic with the direct product 71; (X, x0) X 1 (Y, o) -

12. Suppose that C is a compact subset of the real line R and that f : C — S! is con-
tinuous. Prove that there exists a continuous function g : C — R such that f(c) =
(cos(g(c)), sin(g(c))) forall c€ C.

13.

(a) Determine the fundamental group of the projective plane P . Here you may assume that
S? is simply connected and that covering maps have the path homotopy lifting property, but
you may not assume the Seifert-van Kampen theorem.

(b) Let p:E — B be a covering map, and let f: Y — B be a continuous map. Carefully state
a theorem giving sufficient conditions on f for existence of a lifting of f to E.

(c) Use part (a) together with the theorem of part (b) to show that every continuous map
p: P — S! is nullhomotopic.



Topology Preliminary Examination Wednesday August 10, 2016

You may omit two questions from each part

Part A

1. Show thatif X is regular, then any two distinct points of X have neighborhoods whose
closures are disjoint.

2. Let p:X — Y be a closed continuous surjective map such that p~*(y) is compact for
each y € Y. (Such a map is called a perfect map.) Show that if X is second-countable, then
sois Y.

3. Let Ry, R be the real line endowed with the lower limit topology and the standard
topology, respectively. If L is a straight line in the plane, describe the topology L inherits
as a subspace of Ry X R and as a subspace of Ry X Rp.

4. Recall that a topological space X is locally compact if for each point x € X there exists
a compact subspace of X containing a neighborhood of x. If X is locally compact and
f : X — Y is continuous, does it follow that f(X) is locally compact? What if f is both
continuous and open? Justify your answer.

5. An isometry of a metric space (X,d) isamap f:X — X satisfying d(f(x), f(y)) =
d(x,y) forall x,yeX.

(@) Prove thatif (X,d) is compactand f: X — X is an isometry, then f is a homeomor-
phism.

(b) Give an example of a metric space (X,d) and an isometry of X that is not a homeo-
morphism.

6. Let 7, 7’ be two Hausdorff topologies on a set X .

(@) Suppose that 7' O 7. What does compactmess of X under one of these topologies
imply about compactness under the other?

(b) Show thatif X is compact under both T and 7', then either T, 7’ are equal or they
are not comparable.

7. Let C be the standard middle-thirds Cantor setin [0,1], andlet f:C — [0,1] be any
continuous function. Show that there exists a continuous function g : C — [0, 1] such that
flc)+gl(c) forall ce C.



8. Aspace Z has the fixed point property if for every continuous function g : Z — Z there
exists z € Z such that g(z) = z.

(a) Prove that aretract of a space with the fixed point property has the fixed point property.

(b) Suppose that X and Y are spaces with the fixed point property. If each of X, Y is closed
in XUY and XNnY = {p} is a point, show that X U Y has the fixed point property.

Part B

9. Suppose that C is a compact subset of the real line R and that f: C — S! is con-
tinuous. Prove that there exists a continuous function g : C — R such that f(c) =
(cos(g(c)), sin(g(c))) forall ce C.

10. Suppose that a Hausdorff space X is the union of two simply connected, path connected
open subsets U, V such that the intersection U NV is non-empty and path connected.
Prove that (X, Xxo) is the trivial group (where you may assume that xo € Un V). If you
use the Seifert-van Kampen theorem for this, prove it.

11. Describe the three 2-sheeted connected covers of P2 v S!, where P? denotes the
projective plane. Determine which of these covers (if any) is a regular cover, i.e. corresponds
to a normal subgroup of (P2 Vv §1).

12. Calculate the fundamental group of R3\ L, where L is a finite union of lines through
the origin.

13. Let n be a prime number. Let X be a path connected space whose fundamental group
is cyclic of order 7, and suppose that p : X — X is an (n + 1)-sheeted covering map. Show
that X is not path connected, and that some path component of Xis homeomorphic to X.



University of Tennessee
Topology Preliminary Examination
January 8, 2016

You must omit two questions from each part. All of your work should appear
on the scparate paper provided. For each answer you provide, clearly indicate
which problem you are answering. Fully justify all of your answers.

Part I

Problem 1. Let f: X = Y be a closed, surjective, continuous map such that
F({y})) is compact for eachy €Y.

(i). Prove thal if X is Hausdor(f, then so is Y.
(ii). Prove that if Y is compact, then so is X.

Problem 2. Let X C R® be the union of the closed line segmenl joining (0,0)
and (1,0) together with the closed line segments joining (0,0) and (1,L+), n =

‘n
1,2,3,.... Show that for any continuous map r : R? — X there is a point z € X,
with 7(2) # 2.

Problem 3. Let D be any countable subset of R2, the plane with the usual
topology. Prove that R*\D is path connected.

Problem 4. A subsel C of the plane is called convex if for any xz,y € C, the
line segment joining x and y is conlained in C.

(i — 3 points). Give a topological classification of all compact convez subsets of
R. If you use a theorem, prove il.

(ii — 7 points). Give a topological classification of all compact convez subsets
of the plane. If you use a theorem, prove it.

Problem 5. Suppose X C R3 and X is not homeomorphic to a proper subset
of itself. Prove X has empty interior.

Problem 6. Consider R in the uniform topology. Show that £ and i lie in
the same component of R¥ if and only if the sequence

Z—F=(@ -y, 22— v2,...)
is bounded.

Problem 7. Consider the space C(R,R) of continuous functions f : R - R
with the compact-open topology. show that the map F : C(R,R) = R,

F(f) = £(0),

is continuous.



Problem 8. Suppose that {Xq, o € J}, is a collection of connected spaces.

Write
X = H Xo
acld
and give X the product topology. Show that X is conneted.

Part II

Problem 9.

(i). Let X,Y be spaces with respective basepoints xo, yo. Prove that
m(X x Y, (2o, y0)) = m1 (X, xo) x 71 (Y, o)

(ii). Let P denote the projective plane. Determine, up to equivalence, all con-
necled covering spaces of P x P.

Problem 10. Given a loop c : [0,1] —-S! at (1,0), its degree deg(cx) is the
integer n such that the lift of o to the reals starting at 0 ends at n. This is under
the covering map p : R — S! defined by p(l) = (cos(2xt),sin(27t)) = e?mti,
Show that h : m(S',1) » Z given by h([a]) = deg(a) is an isomorphism of
groups.

Problem 11. Consider the sphere S? := {(z,y,2z) € R® : 22 + y2 + 22 = 1}
and write Y for that portion of the z-axis determined by —1 < z < 1. Find the
fundamental group of the space S2UY at the point (0,0,1).

Problem 12. Show that any continuous map from S? to the torus S' x S! is
homotopic to a constant map.

Problem 13.
(i). Show that there are no covering maps S — S x S'.

(ii). Show that there are no covering maps S' x S! — S2.
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University of Tennessee
Topology Preliminary Examination
August 12, 2015

You may omit two questions from each part. Remember to fully justify, with
proof, all of your answers.

Part I

Question 1. Let X be a space and consider o € X. Consider the inclusion
t: X = X x X, given by
i(z) = (z, ).

Find a necessary and sufficient condition on X for i to be a closed map.
Question 2. Let X be a space.
(a). Show that each connected component of X is closed.

(b). Show that if the number of connected components is finite, then each
connected component is open.

(c). Give an ezample of a space X and a connected component C C X with
the property that C is not open.

Question 3. Suppose that (X, d) is a metric space, and suppose x9 € X. Define
B := {z : d(z,z0) < 1} and define C := {z : d(z,z0) < 1}.

(a). Is C compact?
(b). Prove or show false: C is the closure of B.

Question 4. Suppose that X is a space and A C X is a connected subset. Prove
or show false: There exist subsets U and V, open in X, such that UNV =0
and ACUUV.

Question 5. Suppose that X is locally compact and Hausdorff. Prove that for
every ©g € X and every open subset U D xo, there ezists an open set V 2 zg
with the property that V is compact and V C U. Hint: Consider the one-point
compactification of X.

Question 6. Let X be the collection of all continuous functions f : R — R.

(a). Write T for the compact-open topology on X. Write down a subbasis for
Te and draw a picture of e typical subbasis element. That is to say: ezplicitly
choose an element of the subbasis you wrote down, then draw the graphs of
several functions in this element on the same set of azes.



(b). Since each f € X may be regarded as an element of RR, we may view X
as a subspace of RR with the product topology, which we denote Tp. Once again,
write down a subbasis for this topology and draw a picture of a typical subbasis
element.

(c). Is T = Tp? Are they comparable? Justify your answers with a proof.
Question 7. Show that RR with the product topology is not metrizable.
Question 8. Give an example of each of the following:

(a). Two non-homeomorphic spaces, neither of which is Hausdorff

(b). Two spaces X,Y and a continuous bijection f : X — Y that is not a
homeomorphism.

(c). A totally disconnected space X with the property that the topology on X is
not the discrete topology.

Part II

Question 9. Ezplicitly (i.e. write a formula) find the universal cover of the
Moébius band. Justify your enswer with a proof.

Question 10.

(a). Write X :=[0,1]x[—1, 1] and consider the equivalence relation determined

by declaring the pair (0,t) equivalent to (1,t), —1 < t < 1, and declaring every
other point of X equivalent to itself. Write Y := X/~ for the quotient space.
Show that Y is homeomorphic to S x [-1,1].

(b). Show that the cylindrical segment S* x [~1,1] is a double cover of the
Moébius strip.

Question 11. Suppose that there is a deformation retraction from the space X
to a point zo € X. Show that for each open set U > =zg, there is an open set
V 2 xo, V C U, with the property that the inclusion

i 1 m(V, o) = (U, zo)
i8 trivial.

Question 12. Write X := R2\(0,0). Choosing any basepoint that you like,
carefully calculate the fundamental group of X v S1.

Question 13. Make mathematically precise, and then prove, the following state-
ment. ‘In a path-connected topological space, it doesn’t matter what basepoint
you pick to calculate the fundamental group.’



Topology Preliminary Examination Monday January 5, 2015

You may omit two questions from each part

Part A

1. Let X be a topological space with the property that for any two distinct points of X,
there is an open set containing exactly one of them. Suppose also that for any x € X and
any closed subset A of X not containing x, there are disjoint opensets U 3 x and V 2 A.
Prove that X is Hausdorff.

2. Let d(a,b) = min(]la - b|, 1) be the standard bounded metric on R. Recall that
the uniform metric p on RY? is defined as follows: given points x = (x;, X2,...),
y=(1,¥2,...) In R®, p(x,y) = supd(Xn, ¥n) .

Given a point X = (x3, X2,...) € R? and anumber 0 <€ <1, let

Ux,e) = H(xn—e,xn+e) .
neN
(i) Show that U(x, €) is not open in the metric space (R®, PD).
(i) Give a description of the open ball of radius & about x in (R¥, p), in terms of sets of
form U(x, €).

3. Let C be the standard middle-thirds Cantor setin [0,1], and let f:C - [0,1] be any
continuous function. Show that there exists a continuous function g: C - [0,1] such that
f(c) £g(c) forall ceC.

4. State the Lebesgue Number Lemma. Using this result or otherwise, prove the following:

Let X, Y be metric spaces, and suppose that X is compact. Then each continuous function
J:X =Y is uniformly continuous.

5. Let X be the Hilbert cube I, a countable product of copies of I = [0, 1] endowed with
the product topology. Assuming that each I (n = 1,2,...) has the fixed point property,
prove that X has the fixed point property. (A space X is said to have the fixed point property
if each continuous function f : X — X has a fixed point.)

6. Give an example, with justification, of a Hausdorff space that is not metrizable.

7. Let (X, d) be a complete metric space, and let f: X — X be a contraction mapping,
i.e. there exists o < 1 such that d(f(x), f(¥)) < ad(x, y) forall x, v € X. Prove that
S has a unique fixed point.



8. Let Ry be the real line with the lower limit topology, i.e. the topology with basis the
collection of all half-open intervals [a, b) (a,b€E R,a < D).

(i) Show that the space Ry x Ry is separable, ie. it has a countable dense subset.
(i) Find a closed subset of Ry X Ry that is not separable.

Part B

9(i) Carefullydefine the fundamental group of a space X with basepoint x¢ € X, and explain
how a continuous function f : X — Y gives rise to a homomorphism fi : m (X, xo) —
m(Y, f(xo)).

(i) Show thatif f:S! — S! is nullhomotopic, then f has a fixed point and f maps some
point x to its antipode —x.

10. Compute the fundamental group of the Klein bottle, either (i) using the van Kampen
theorem, or (ii) considering the Klein bottle as the quotient of the Euclidean plane under a
suitable group action.

11. Let p:E — B be a covering map.

(i) Show that p is an open map, and give an example to show that p is not necessarily a
closed map.

(ii) Show that if B is Hausdorff, thensois E.

12. Let X be a path connected, locally path connected space whose fundamental group is
finite. Prove that any map f: X — S! is nullhomotopic. (State carefully any “big” theorem
that you use.)

13. Let P denote the projective plane, and let X = P v P, two copies of P glued together
at a single point x;. By lifting paths to a suitable covering space of X, show that m; (X, xo)
is not abelian. Also determine whether or not your covering space is regular.



Topology Preliminary Examination Wednesday August 13, 2014

You may omit two questions from each part

1. Let X be aninfinite set with the finite complement topology. Prove that every continuous
map f:X — R is constant.

2. Let X be a topological space. Prove that the following are equivalent:
(@ X is T, ie. everypointin X is closed.
(b) Every subset A of X is the intersection of a family of open setsin X.

3. Assuming that each cell I" has the fixed point property, prove that the Hilbert cube I*
has it as well.

4. Let X, Y be the following subspaces of R?:
X={0} x[-1,1Du (~-1,1]x{0}) , Y=({0}x[0,1])u([-1,1]1x {O}) .

Show that X, Y are not homeomorphic.

5. Let X be a connected space, and let f,g: X — [0,1] be continuous functions with f
surjective. Prove that there exists x € X with f(x) = g(x).

6.

(@) Give an example, with justification, of a continuous function f : X — Y such that Y is
path-connected and f~1(y) is path-connected for all y € Y, but X is not path-connected.

(b) Let g: A — B becontinuous, where B is path-connected and g~—!(b) is path-connected
for all b € B. Suppose that there exists a continuous function h: B — A suchthat goh
is the identity on B. Show that A is path-connected.

7. Is it true that if the 1-point compactifications of two locally compact Hausdorff spaces
X, Y are homeomorphic, then X, Y are necessarily homeomorphic? Give a proof or coun-
terexample, as appropriate.



8. Let X be a complete metric space.

(@) Let F, 2 F, 2 F; 2 ... be a nested sequence of non-empty, closed, bounded subsets of
X , whose diameters — 0. Prove that ()., Fm consists of a single point.

(b) Prove that X is a Baire space, i.e. the intersection of a countable family of open dense
subsets of X is densein X.

Part B

9. Let X be the union of the three coordinate axes in R3. Compute m (R3\X).

10. Let p:E — B be a covering map with p(ep) = by. Let Y be a path-connected, locally
path-connected space, and let f:Y — B be a continuous function such that f(y) = by
and fi(m(Y, »0)) C p«(m(E, €p)) . Prove that f can be lifted to a continuous function
F:Y — E suchthat F(yy) =€y and poF=f.

11. Let G beatopological group, with group operation - and identity element e. Given loops
S, g in G based at e, let f- g denote their pointwise product (f-g)(t) = f(t)-g(t). Show
that this operation on loops based at e induces a well-defined operation on path homotopy
classes, and that this induced operation is the same as the group operation of ™ (G, e) .
Show that (G, e) is Abelian.

12.

(a) Compute the fundamental group of X = P2 v §!, the one-point union of a projective
plane and a circle.

(b) Either prove that X has precisely three distinct connected 2-fold covering spaces, or
construct two distinct connected 2-fold covering spaces of X .

13. Let S? be the unit sphere in R3, ie. S2 = {x € R3| |Ix|| = 1} . Consider the map
f:AxB— 52, where

A= {(x,y9,2)eR|x*+y?=1,2z=0}
B = {(X,J’,Z)GR3|(J’—3)2+22=1,x=0}
and
r-4
s = T EA. €B).
o) = y—y  PeA.aeh

Is the map f homotopic to a constant map?



TOPOLOGY PRELIMINARY EXAMINATION

AUGUST 16, 2013

You may omit two questions from each part (the result of the prelim is based on
top 6 problems from Part I and top 3 problems from Part II).

PART I

1. For a set X, let Xy stand for X equipped with the finite complement
topology. Let X, Y be two sets. Compare the topologies of (X x Y)s and
X5 x Y;. Are they equal? Is one of them strictly finer than the other?

2. Suppose that f and g are two continuous maps from a topological space X
to a Hausdorff space Y. Let Z C X be the subspace consisting of all points
z € X such that f(z) = g(z). Show that Z is closed in X.

3. A Hausdorff space X is called completely normal if every subspace of X is
normal. Prove that the following are equivalent:
(a) X is completely normal.
(b) For every A; B C X such that ANB =0 and AN B = @, there are open
sets U;V suchthat ACU,BCV ,andUNV = .

4. Show that the subspaces [0,1) and (2,3) of the real line R are not homeo-
morphic.

5. Let X be the so-called Hawaiian earring, which is the subspace of the plane
defined by X = U, C,, where

Cpn = {(w,y)l (fc~%)2+y2=$}-

Define an cquivalence relation on the line R as follows: a ~ b if eithera = b
or if a,b € Z. Let Y be the corresponding quotient space of R.
Show that the spaces X and Y are not homeomorphic.

6. Which of the three subsets P,Q, P N Q of R? are connected? Here

P = {(z;y)| at least one of z;y is irrational}

and
Q = {(z;y)| at least one of z;y is rational}

7. Suppose {fo : X = Y, | a € A} is a collection of continuous functions
defined on a Hausdorff space X such that to each z € X and each neighbor-
hood U of z, there corresponds o € A such that fo(z) ¢ Clos(fo(X —U)).
Show that X can be embedded in [],, Ya.

1



10.

11.

12.

13.

AUGUST 16, 2013

Let A,, n > 1, be closed subsets of the line R such that A; N A; = @ for
any ¢ # j. Show that

Int (G A,,) = O Int(Ay).
n=1

n=1

PaArT 11

Let X = U2, X,, where X, is a simply connected open subspace of X and
X C Xk41 for each positive integer k. Show that X is simply connected.

Suppose that X is a path connected space, p: X = X is a 3-fold covering
map and suppose that the fundamental group of X is isomorphic to the
cyclic group of order 2. Show that X is not connected and some component
of X is homeomorphic to X.

Denote by B? the unit disk {z € R? | |z| < 1} and by S? its boundary
{z € R? | |z| = 1}. Suppose f : B> - R? is a map such that f(S') C B2
Show that f(z) = z for some point z € B2.

Show that any map of the 2-dimensional sphere $? to the torus S x S? is
homotopic to a constant map.

Denote by S? the unit sphere in R3: $? = {z € R® | ||z|| = 1}. Let
f: 8% = 52 be a continuous map such that ||f(p) — p|| < 1 for all p € S2.
Must f be onto?



University of Tennessee
Topology Preliminary Examination
January 4, 2013

You may omit two questions from each part (the result of the prelim is based on top 6
problems from Part I and top 3 problems from Part II).

PART I

e 1. Consider the following topologies on R:
(i) discrete,
(ii) standard (order topology), and
(iii) Zariski (finite complement topology).
For each of these topologies, determine whether or not the interval (—o0,2012) is:

(a) open,
(b) closed,
(c) compact (in the subspace topology).

o 2. Let {Aq} be a collection of subsets of a topological space X satisfying X = (J Aq-
Suppose f : X — Y is a function to a topological space Y such that flAy : Ay — Y
is continuous for each a.

Show that if the family {Ay} is locally finite and each A, is closed, then f is contin-
uous. An indexed family of sets {Aq} is said to be locally finite if each point z of
X has an open neighborhood that intersects A, for only finitely many values of a.

e 3. Let A be a proper subset of X, and let B be a proper subset of Y. If X and Y
are connected, show that (X x Y)\ (A x B) is connected.

e 4. Prove or disprove each of the following statements:
(i) Each metrizable space has a countable basis for its topology.

(if) If X, Y are homeomorphic metric spaces and X is complete, then Y is com-
plete.

(iii) If the metric space X is compact, then it is complete.

e 5. (a) Let X be a topological space, and let A C X x X be the subset
{(z,z):z € X}. Prove that X is Hausdorff if and only if A is closed in X x X .

(b) A topological group is a group G that is also a topological space, satisfying the
following conditions: (i) G is T}, i.e. singleton subsets of G are closed; (ii) the map

1



p:GxG — G sending (g1, g2) to g1g2 is continuous; (iii) the map 7: G —» G
sending g to g~! is continuous.

Use part (a) of this question to show that a topological group is Hausdorff.

6. Let p: X — Y be a quotient map (that means U C Y is always open if p~}(U) is
open in X). Show that if X is locally connected, then Y is locally connected.

7. Let x1,Z2,... be a sequence of points of the product space [] X,. Show that
this sequence converges to the point z if and only if the sequence 7, (z1), 7a(z2), ..
converges to m,(z) for each a.

8. Show that if X is regular, every pair of different points of X have neighborhoods
whose closures are disjoint.

PART II

9. (i) Carefully define the fundamental group of a space X with basepoint zg € X,
and explain how a continuous function f: X — Y gives rise to a homomorphism
f* : 7"1(-‘)(’ xO) - Wl(Yv f(xO)) .

(ii) Show that if f : S' — S! is nullhomotopic, then f has a fixed point and f
maps some point z to its antipode —zx.

10. Compute the fundamental group of the space obtained from the unit 2-dimensional
sphere by identifying the North and South Poles.

11. Define S' Vv S? (called the wedge of two copies of §) as ST x1U1x 81 c S x S1.
Show that m;(S? Vv S1) is not Abelian without using Seifert-van Kampen theorem.

12. Define contractible spaces. Show the space of reals R is contractible.

13. Let p: X’ — X be a covering projection and let A be a connected space. Suppose
f:A— X is a map such that f(A) is contained in an evenly covered open subset of
X. Show that any two lifts f/, f” : A — X’ of f are identical if f'(ag) = f"(ao) for
some ag € A.



University of Tennessee
Topology Preliminary Examination
August 13, 2012

You may omit two questions from each part (the result of the prelim is based on top 6
problems from Part I and top 8 problems from Part II).

PART 1

e 1. Let X be a first countable space (that means every point in X has a countable
basis of neighborhoods).
a. Define convergence z, — xp in X.
b. Show a function f : X — Y of first countable spaces is continuous if and only if
Zn — zp in X implies f(z,) — f(zo) in Y.

e 2. Suppose Y is a topological space consisting of exactly 2 points. Show that for any
connected subset Xy of a topological space X and any continuous function f : Xg —
Y there is a continuous extension F : X — Y of f (that means F(z) = f(z) for all
z € Xj).

e 3. Characterize topological spaces X such that the diagonal A(X) is an open subset
of X x X.

e 4. Let (X,d) be a compact metric space with the property that for any ¢ < 1,
there are points x;,y: so that d(z:,y;) = t. Prove there are points z and y so that
d(z,y) = 1.

e 5. Let X be locally path connected. Show that every connected open set in X is
path connected.

e 6. A topological space is called a Baire space if the union of any countable collection
of closed sets with empty interior has empty interior. Show that if Y is a Gj set in
X, and if X is compact Hausdorff, then Y is a Baire space in the subspace topology.

e 7. Prove that [0,1) x [0,1) is homeomorphic to [0, 1] x [0, 1).

¢ 8. (a) List all separation axioms you know.
(b) Suppose every closed family {F;}ses such that {int(F;)}ses is a cover of a topo-
logical space X has a finite subcover. Under what separation axioms on X is X
compact?



PART II

9. Suppose Y is a connected space consisting of exactly 2 points.
a. Show Y is path connected.
b. Show Y is simply connected.

10. (a) Define the property of existence and uniqueness of path lifting for a map
p: E — B of topological spaces.

(b) Suppose p: E — B is a map, E # 0, and B = [0,1]. Show p has existence and
uniqueness of path lifting if and only if p|C : C — B is a homeomorphism for every
path-component C of E.

11. Suppose f : S! — R is continuous. Show there is zp € S! such that f(—z) =

f(Z(]).

12. Show that every map f: RP2 — S x S! from the projective plane to a torus is
homotopic to a constant map.

13. Let p: E — B be a map of topological spaces. Suppose U and V are subsets of
B evenly covered by p. Show U UV is evenly covered if U NV is non-empty and
connected.



Topology Preliminary Examination Friday January 6, 2012
You may omit two questions from each part

Be sure to give full explanations

Part A

1. Suppose Y is an ordered set with the order topology. Let X be a subset. Prove or give a
counterexample: the order topology and the subspace topology on X coincide.

2. Let X be a space. Let us define a relation ~ on X by saying that x ~ 7 if there is no
separation of X into disjoint open sets A, B such that x € A and y € B. Prove that the
relation ~ is an equivalence relation; the equivalence classes are the quasicomponentsof X .
Find a subspace X of the plane with the following property: there exists a quasicomponent of
X that is not a component of X .

3(1) Let R® be given the product topology. Prove that if K is a compact subset of R? , then
K has empty interior.

(ii) Let X be the space [0, 1]% with the uniform topology. Show that X is not locally compact.

4. Let (fy) be a sequence of continuous functions from the topological space X to the metric
space Y. If (f,) converges uniformly to a function f, prove that f is continuous.

5. Let X be a metric space.
(i) Suppose that for some € > 0, every €-ball in X has compact closure. Show that X is
complete.

(ii) Suppose that for each x € X thereis an € > 0 such that the ball B(x,€) has compact
closure. Show by means of an example that X need not be complete.

6. Let X C R®” be the set of all sequences x = (x;) such that Zi xl? converges. The
£2-topology on X is the topology induced by the metric d(x,y) = (3 ;(x: - yi)z)ll2 .

Show that on X, we have the inclusions box topology > £*topology O uniform topology. Show
that these three topologies on X are distinct.



7. Let X be a compact metric space. Prove directly that X embeds into a countable product
of unit closed intervals.

8. Suppose that X is connected and Hausdorff, such that every proper closed subset of X
containing at least two points is disconnected. Show that X \ {xo} is connected for every
Xo€X.

Part B

9. Let X = P2v §!,ie. X is the result of gluing together the projective plane P? and the
circle S! at a single point. Use a suitable covering space of X to show that the fundamental
group of X is not commutative.

10. Let G be a topological group, with group operation - and identity element e. Given loops
f., g in G based at ¢, let f-g denote their pointwise product (f - g)(t) = f(t) - g(t). Show
that this operation on loops based at e induces a well-defined operation on path homotopy
classes, and that this induced operation is the same as the group operation of m (G, e). Show
that m (G, e) is Abelian.

11. Use the Lebesgue number lemma to show that $? is simply connected. (Do not use the
Seifert - van Kampen theorem.)

12. Prove (carefully) that each continuous function from the unit disk B2 to itself has a fixed
point. Further, prove that if A is a retract of B?, then each continuous function from A to
itself has a fixed point.

13. Recall that a subspace A of a topological space X is a strong deformation retract of X
if there is a continuous map H : X X I — X such that: (i) H(x, 0) = x foreach x € X,
(i) H(x, 1) € A foreach x € X, and (iii) H(a,t) =a foreach a € A andeach t €.

(i) Suppose that A is a strong deformation retract of X. Let ap € A. Show that the inclusion
map j: (A, ag) — (X, ao) induces an isomorphism of fundamental groups.

(ii) Give an example of a contractible space X and a point xp € X, such that the subspace
fxo} is not a strong deformation retract of X .



Topology Preliminary Examination Wednesday August 10, 2011
You may omit two questions from each part

Be sure to give full explanations

Part A

1. Define the finite complement topology on a set X, and prove that this is indeed a topology
on X.

Let R be given the finite complement topology. To which point or points does the sequence
(1/n) converge?

2. Prove or disprove (with an explicit example) the following statement: Let A be a set with
two compact, Hausdorff topologies T and 8. If T is contained in § then 7 equals §.

3. Suppose that d: X XX — [0, o) is a symmetric function such that d(x, ) = 0 if and only
if x =y . Show that 4 is a metric if d(x, z) < max(d(x,y), d(y,z)) forall x,y,z€ X. A
space equipped with 4 satisfying these conditions is called an ultrametric space. Show that the
topology for an ultrametric space has a basis consisting of sets that are both closed and open.
Conclude that an ultrametric space X is totally disconnected, i.e. each connected subset of X
contains at most one point.

4. Let 7 be the uniform metricon R%, and for x = (x;, X2, ...) € R® let
U(x, €) =H(x,-—e, Xi+€) .
izl
(i) Show that U(x, €) is not open in the uniform topology.
(i) Let Bp(x, €) denote the open €-ball about x in the metric 7. Show that

By(x,e) = | JUx, ) .

6<e

5. Let C be the standard middle-thirds Cantor set in [0, 1], and let f:C — [0, 1] be any
continuous function. Show that there exists a continuous function g : [0, 1] — [0, 1] such
that f(c) # g(c) forall ce C.

6. Prove that a metric space is compact if and only if it is complete and totally bounded.



7() Let A be a connected subset of a topological space X . Show thatif AC BC A, then B
is connected.

(i) Show thatif A is a countable subset of R?, then R — A is path connected.

8. Given topological spaces X, Y, let C(X, Y) be the space of continuous functions from X
to Y, with the compact-open topology.

Let Y be alocally compact Hausdorff space. Show that the “composition” map
CX,Y)xC(Y,2Z2)-CX,Z) , (f,g9)—~g°f

is continuous.

Part B

9. Let g: X - Y and 7 :Y — Z be covering maps; let p = 7 o q. Show that if r~1(z) is
finite for each z € Z, then p is a covering map.

10. A continuous function p : E — B has the unique path lifting property if, given by € B and
eo € p~t(bo), apathin B beginning at by has a unique lift, with respect to p, to a pathin E
beginning at ep.

Suppose that p : E — R has has the unique path lifting property. Show that p is a homeomor-
phism if E is path connected. Characterize the spaces F such that the projection F XR — R
has the unique path lifting property.

11. Suppose that B and D are connected, locally path connected, and semilocally simply
connected. Assume that A is the universal covering space of B and C is the universal covering
space of D . Prove that B X D is semilocally simply connected, and that the universal covering
space of Bx D is A x C (all with the product topology).

12. Let X be the figure-eight space, and let Y be the theta-space, i.e.

X={(x,y)eR:x*+(y-1)2=1} U {(x,y) e R:x*+ (y +1)* =1} ,
Y={(x,Y)€eER:x?+y*=1} U {(x,0)eR?: -1 <x<1}.

Show that X, Y are homotopy equivalent.

13()) Show that every continuous map from the projective plane P? to the circle S! is null-
homotopic.

(ii) Find a continuous map from the torus S! X S! to S! that is not nullhomotopic.



University of Tennessee
Topology Preliminary Examination
January 7, 2011

You may omit two questions from each part (the result of the prelim is based on top 6
problems from Part I and top 8 problems from Part II).

PART 1

e 1. Let R*™ be the subset of R“ consisting of all sequences that are ‘eventually zero ’,
that is, all sequences (z1, z2,...) such that z; # 0 for only finitely many values of <.
What is the closure of R® in R“ in the box and product topologies? Justify your
answer.

e 2. Let p: X — Y be a closed continuous surjective map. Show that if X is normal,
thensois Y.

e 3. (a) Let X be a topological space, and let A C X x X be the subset
{(z, z) : x € X}. Prove that X is Hausdorff if and only if A is closed in X x X .

(b) A topological group is a group G that is also a topological space, satisfying the
following conditions: (i) G is T}, i.e. singleton subsets of G are closed; (ii) the map
p: Gx G — G sending (g1, g2) to 9192 is continuous; (iii) the map 7: G — G
sending g to g~ ! is continuous. '

Use part (a) of this question to show that each topological group is Hausdorff.
e 4. Show that R x R in the dictionary order topology is metrizable.

e 5. Suppose (X, p) is a complete, connected, locally pathwise connected metric space
and A, A, ... are compact subsets of X such that, for any path f:[0,1} — X, any
€ > 0 and any integer i > 0 there is a path g : [0,1] — X such that p(g, f) < € and
9([0,1]) N A; = 0. Show that X — |J; A; is pathwise connected.

e 6. Let A be a proper subset of X, and let B be a proper subset of Y. If X and Y
are connected, show that (X x Y) — (A x B) is connected.



e 7. Show that [0, 1]“ is not locally compact in the uniform topology.

e 8. Show that in a Hausdorff space X every nested intersection of compact, connected
subsets {Bj|A € A} is connected.

PART II
¢ 9. Let 2o and z; be points of the path-connected space X. Show that m1(X, o) is

abelian if and only if for every pair a and § of paths from zg to x;, we have & = 3
(these are the homomorphisms (X, zg) — m1 (X, z1) induced by « and S)

e 10. Let p: E — B be a covering map. Show that if B is compact and p~!(b) is finite
for each b € B, then E is compact.

e 11. Show that if g : S! — S! is continuous and g(z) is not equal g(—=z) for every z,
then g is surjective.

e 12. Define a relation on R? by (zg,%0) ~ (z1,41) if 21 — 2o € Z and y; — yo € Z.
Show
a) This is an equivalence relation.
b) The quotient map p: R? — R?/ ~ is a covering projection.
¢) Describe representatives of all homotopy classes of loops in R2/ ~ with the quotient
topology.
d) m(R?%/ ~) = Z2.

e 13. Let Y be a compact metric space and suppose that p: X — Y is a covering map.
Show that for some ¢ > 0 every epsilon ball B(z,€) in Y is evenly covered.



Topology Preliminary Examination
January 2010

You may omit two questions from each part.

PART I

1. Let X be a set and F be a collection of functions from X into the real
numbers R. For z € X, e > 0, and fi, ..., f € F, define

B(z)eaflv--’ fk) = {y : |f;($) - f,(y)l <gforalli= ]t,...,k}

(a) Prove that the collection of all such sets B(z,¢, f1, ..., ) is a basis
for a topology W on X.

(b) Prove that W is the coarsest (i.e. smallest) topology on X such that
every f € F is continuous.

(c) Show that if X has a completely regular topology 7 and F is the
collection of all continuous functions with respect to 7 then 7 = W.

2. A topological space X is said to be perfectly normal if X is normal and
every closed subset of X is a Gs-set (i.e. the intersection of a countable
collection of open sets). Prove that every metrizable topological space is
perfectly normal.

3. Let X be a compact, connected metric space and z,y € X. Prove that
there is a compact, connected subset A of X containing z,y with the
following property: If C is any compact, connected subset of X containing
z and y then C is not a proper subset of A.

4. Let X be a topological space and {A,}aca be a collection of connected

subsets of X such that the intersection of the closures {7} A, is non-empty.

aA
Let A:= {J A..
a»eA

(a) Show by example that A need not be connected.
(b) Prove that A is connected, provided at least one A, is closed.

P‘

A Hausdorff space X has the following property: For any closed sets
A,B C X and open set U in X x X containing A X B, there are open sets
V, W containing A, B, respectively, such that V x W C U. Prove that X
is normal.

6. Let A be a collection of open sets in X. Suppose U and V are open sets
in X so that AU{UNV} is a cover of X. Prove that if both AU{U} and
AU {V} have finite subcovers, then AU {U NV} has a finite subcover.

7. Let X be a compact, Hausdorff topological space and U C X be open.



10.

11.

12.

13.

(a) Show that U has a one-point compactification T = U U {oo}.

(b) Prove that the function f : X — U that is the identity on U and
takes X\U onto oo is a quotient map.

. Let X be a metric space. Prove that X is totally bounded if every se-

quence in X has a Cauchy subsequence. If you want to use the metric
completion of X for the proof, then you must prove here that it exists
(not the recommended strategy!).

PART II

. Compute the fundamental group of the following subset of R3: The union

of the unit sphere {(z,y,2) : 2 + y2 + 2 = 1} with the line segment
joining the antipodal points (0,0,1) and (0,0,—1). You do not need to
explicitly define any deformation retractions that you use, but you must
give a convincing description. If necessary you may use the fundamental
group of the circle without proving what it is here.

Suppose a topological space X = UUV, U and V are open in X, and
U NV is path connected with o € UNV. Let i : 7, (U, z0) — m1(X, z0)
and j : m(V,z9) — m1(X, o) be induced by the inclusion maps. Prove
that 71 (X, zo) is generated by the images of i and j. That is, each element
of 71(X) is a finite product of elements, each of which is in the image of
% or in the image of j.

Let P denote the projective plane. Prove that any coveringmaph: P — P
must be a homeomorphism. As part of this problem you should explain,
without checking all details, how to compute the fundamental group of P.

Consider the set A consisting of the Euclidean plane with the interior of
the unit disk removed-that is, A := {(z,y) : 22 +y% > 1}.

(a) Write down explicitly (i.e. with a formula!) the universal covering
map of A, and verify that the map is the universal covering map.

(b) Use the universal covering map to compute the fundamental group
of A.

(c) Use a deformation retract and the fundamental group of a famil-
iar space (which you do not have to compute here) to compute the
fundamental group of A.

Let p : E — B be a covering map. Suppose f : I x I — E is a function
(I = [0,1]) such that po f is continuous, f|;x o} is continuous, and f|{s}xz
is continuous for all ¢ € I. Show that f is continuous.





