ALGEBRA PRELIM EXAM, AUGUST 2024

Instructions: Attempt all problems in all parts. Justify your answers.

General assumptions: All rings have $1 \neq 0$ and all modules are unitary.

Part I.

- 1. Let G be a group of order 204. Suppose that G contains a subgroup H of order 6. Prove that G contains a normal, Abelian subgroup of order 51.
- 2. Let G be a finite group with H a subgroup. Suppose that the greatest common divisor of |H| and $[G : H]$ is greater than 1. Prove that there exists $g \in G \setminus H$ such that $H \cap gHg^{-1}$ contains a non-identity element.

Part II.

- 1. Let R be a commutative ring, and suppose that $P_1, \ldots, P_n \subset R$ are prime ideals. If the intersection $Q = P_1 \cap \cdots \cap P_n$ is also a prime ideal, then show that $Q = P_i$ for some *i*.
- 2. Suppose that R is a Noetherian unique factorization domain. Prove that R is a principal ideal domain if and only if whenever $f, g \in R$ and the gcd of f and g is 1, the ideal (f, g) is equal to R.

Part III.

1. Let R be a principal ideal domain. Suppose that

$$
M = R/r_1 \oplus R/r_2 \oplus R/r_3 \oplus R/r_4
$$

with $r_1, r_2, r_3, r_4 \in R$ non-zero, not units, and with r_i dividing r_{i+1} for $i = 1, 2, 3$. Prove that there exists a finitely generated R-module N such that $M \cong N \otimes_R N$ if and only if r_1, r_2 , and r_3 are associates.

2. Let k be a field, and consider the polynomial ring $R = k[x, y]$. Let I be the ideal (x^2, xy, y^3) in R. We can consider $S = k[x]$ as a subring of R, which makes R/I into an S-module. Write R/I as a direct sum of cyclic S-modules.

- 1. Let K be a finite field of characteristic p with p^k elements. Suppose that F, L are subfields of K with $|F| = p^n$ and $|L| = p^m$. Also, suppose that $|F \cap L| = p$. Prove that $K = FL$ if and only if $nm = k$.
- 2. Let E be a finite Galois extension of a field F with Galois group $G = \text{Gal}(E/F)$. Let K be an intermediate field $F \subset K \subset E$ with corresponding subgroup $H = \text{Gal}(E/K) < G$. Prove that the Galois closure of K/F is the subfield corresponding to the subgroup $\cap_{g\in G} gHg^{-1}$ in G .

JANUARY 2024

Instructions: Attempt *all* problems in all four parts. Justify your answer.

General Assumptions: Unless explicitly stated otherwise, all rings have $1 \neq 0$ [and their subrings contain 1] and all modules are unitary.

Part I

- 1. Prove or give a counterexample: Every group of order 2024 is solvable. (You may use the fact that $2024 = 2^3 \cdot 11 \cdot 23$.
- 2. Let p be a prime number and let \mathbb{F}_p be the finite field with p elements. Let $V = \mathbb{F}_p^2$, and recall that $G = GL_2(\mathbb{F}_p)$ is the group of invertible linear transformations on V. G acts on V in the usual way (by multiplication).
	- (a) (2 points) Describe the orbits of this group action.
	- (b) (2 points) Describe the stabilizer in G of the vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 0 $\big).$
	- (c) (4 points) Consider now the action of G on $V \times V$ (acting independently on each of the two vectors). How many orbits does this action have?
	- (d) (2 points) What is the cardinality of G? Remember to justify your answer.

Part II

- 1. Let R and S be rings and let 1_R and 1_S denote their respective identities. Let $\varphi: R \to S$ be a nonzero ring homomorphism.
	- (a) Prove that if $\varphi(1_R) \neq 1_S$ then $\varphi(1_R)$ is a zero divisor in S. Deduce that if S is an integral domain then every nonzero ring homomorphism from R to S sends the identity of R to the identity of S .
	- (b) Prove that if $\varphi(1_R) = 1_S$ then $\varphi(u)$ is a unit in S and $\varphi(u^{-1}) = \varphi(u)^{-1}$ for each unit u of R.
- 2. Assume R is commutative and for each $a \in R$ there is an integer $n > 1$ (depending on a) such that $a^n = a$. Prove that every prime ideal of R is a maximal ideal.

Part III

- 1. Let $I = (2, x)$ be the ideal generated by 2 and x in the ring $R = \mathbb{Z}[x]$. Show that the nonzero element $2 \otimes 2 + x \otimes x$ in $I \otimes_R I$ is not a simple tensor (i.e., it cannot be written as $a \otimes b$ for some $a, b \in I$).
- 2. Let R be a commutative ring (with $1 \neq 0$) and let M be a unitary R-module. Show that $R \otimes_R \text{Hom}_R(R \oplus R, M)$ is a projective R-module if and only if M is a projective R-module.

- 1. Let F be an extension field of the field K with $[F:K] = m$. Let $f(x) \in K[x]$ be irreducible over K and $\deg(f) = n$, where $\gcd(m, n) = 1$. Prove that f is irreducible over F.
- 2. Let F/K be a finite Galois extension and let E/K be any extension. Prove that FE/E is a Galois extension and has Galois group Gal(FE/E) ≅ Gal($F/F \cap E$).

AUGUST 2023

Instructions: Attempt all problems in all four parts. Justify your answer.

General Assumptions: Unless explicitly stated otherwise, all rings have $1 \neq 0$ [and their subrings contain 1] and all modules are unitary.

Part I

- 1. Recall that $C(G)$ denotes the center of a group G .
	- (a) Let G be a finite group and let N be a normal subgroup such that $N \subseteq C(G)$ and G/N is cyclic. Show that G is abelian.
	- (b) Show that every group of order $255 = 3 \cdot 5 \cdot 17$ is abelian.
- 2. Let G be a finite p-group and let $C(G)$ denote the center of G. Show that if N is a non-trivial normal subgroup of G then $N \cap C(G)$ is a non-trivial normal subgroup of G.

Part II

- 1. (a) Show that the polynomial $x + 1$ is a unit in the power series ring $\mathbb{Z}[[x]]$, but is not a unit in $\mathbb{Z}[x]$.
	- (b) Show that $x^2 + 3x + 2$ is irreducible in $\mathbb{Z}[[x]]$, but not in $\mathbb{Z}[x]$.
- 2. Prove that the quotient ring $\mathbb{Z}[i]/I$ is finite for any nonzero ideal I of $\mathbb{Z}[i]$.

Part III

- 1. Let R be an integral domain. Prove that R is a field if and only if every R-module is projective.
- 2. Let R be an integral domain and let Q be its field of fractions. If A is an R-module, prove that every element of $Q \otimes_R A$ can be written as a simple tensor $q \otimes a$ for $q \in Q$ and $a \in A$.

- 1. Let F be a field of prime characteristic p. Suppose $E = F(\alpha)$ is a simple extension such that $\alpha \notin F$ but $\alpha^p - \alpha \in F$.
	- (a) Find $[E : F]$.
	- (b) Prove that E/F is a Galois extension.
	- (c) Find the Galois group $Gal(E/F)$.
	- [Hint: Note that $(x+1)^p (x+1) = x^p x$ in characteristic p.]
- 2. Let $\zeta := e^{2\pi i/7}$ be a primitive 7th root of unity and consider the field extension $\mathbb{Q}(\zeta)/\mathbb{Q}$.
	- (a) Prove that there exists an element $\alpha \in \mathbb{Q}(\zeta)$ such that $[\mathbb{Q}(\alpha):\mathbb{Q}] = 2$.
	- (b) Express α explicitly as a polynomial in ζ .

ALGEBRA PRELIMINARY EXAMINATION SPRING 2023

- Attempt all four parts. Justify your answers.
- Note: Rings are assumed to be commutative and with $1 \neq 0$. Modules are assumed to be unitary left modules. Q denotes the field of rational numbers and \mathbb{F}_q denotes a finite field of q elements.

Part I.

- 1. Show that if G is a group of order 2023, then G is an Abelian group.
- 2. Let G be a group of order 3202 and let $C(G)$ denote the center of G. Show that either G is cyclic or $C(G)$ is trivial. (Hint: 1601 is a prime number.)

Part II.

- 1. Given Principal Ideal Rings A and B, show that the product-ring $A \times B$ is a Principal Ideal Ring.
- 2. Suppose n is a positive integer and R is a ring with only n (distinct) maximal ideals such that R_M (= localization of R at the maximal ideal M) is a field for each maximal ideal M of R. Show that there are fields K_1, \ldots, K_n such that R is isomorphic (as a ring) to the product-ring $K_1 \times \cdots \times K_n$.

Part III.

- 1. Let R be a Principal Ideal Domain and let J be a nonzero proper ideal of R. Suppose n is a positive integer and $h: R^n \longrightarrow \bigoplus_{1 \leq m \leq 2n} R/J^m$ is a R-module homomorphism. Show that h is neither injective nor surjective.
- 2. Let R be an integral domain with quotient-field K and let M be a R-submodule of K. For an integer $n \geq 2$, suppose the *n*-fold tensor product $M \otimes_R M \otimes_R \cdots \otimes_R M$ is a torsion-free R-module. Then, given a permutation σ of $\{1, 2, \ldots, n\}$ and $x_1, \ldots, x_n \in M$, show that

$$
x_1 \otimes x_2 \otimes \cdots \otimes x_n = x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \cdots \otimes x_{\sigma(n)} \quad (\text{in } M \otimes_R M \otimes_R \cdots \otimes_R M).
$$

Part IV.

- 1. Let $K < L$ be fields such that $[L : K] = 2$. Let E be a purely transcendental field-extension of L of finite transcendence degree. If the fixed-field of $G := Aut(E/K)$ is L, then show that L is purely inseparable over K .
- 2. Let K be a field and let X be an indeterminate. For an integer n , define

$$
f_n := X^3 - (4n^2 + 2n + 7)X - (4n^2 + 2n + 7) \in K[X]
$$

and let $G(n, K)$ denote the Galois-group of f_n over K. For each integer n, determine up to isomorphism, the groups $G(n, \mathbb{F}_2)$, $G(n, \mathbb{Q})$ and $G(n, \mathbb{F}_3)$.

ALGEBRA PRELIMINARY EXAMINATION **FALL 2022**

- Attempt all four parts. Justify your answers.
- For a positive integer n, the group of permutations (resp. even permutations) of $\{1,\ldots,n\}$ is denoted by S_n (resp. A_n) and \mathbb{Z}_n denotes the additive group of integers modulo n.
- Rings are assumed to be commutative with $1 \neq 0$ and modules are assumed to be unitary left modules.

Part I.

- 1. Show that a group of order 81522 is solvable but a group of order $8 \times 15 \times 22$ need not be solvable. (Hint: 647 is a prime divisor of 81522 .)
- 2. If a group G of order 2022 has at least 1 but at most 666 elements of order 6, then show that G is cyclic. (Hint: 337 is a prime divisor of 2022 .)

Part II.

- 1. Let R be a ring and a, $b \in R$. For a positive integer n, let $J_n := Ra^n + R b^n$. Show that if J_1 is a principal ideal generated by a non-zerodivisor of R , then J_n is a principal ideal generated by a non-zerodivisor of R for each $n \geq 2$. Find an example of a ring R with elements $a, b \in R$ such that for each $n \geq 2$, J_n is a principal ideal generated by a non-zerodivisor of R but J_1 is not a principal ideal of R .
- 2. Let R be a Unique Factorization Domain. Suppose R has finitely many irreducibles p_1, \ldots, p_n such that each irreducible element of R is an associate of exactly one of p_1, \ldots, p_n . Show that R is a Principal Ideal Domain.

Part III.

- 1. Let R be a Principal Ideal Domain and suppose M is a finitely generated R-module such that $Hom_R(Hom_R(M, R), R)$ is R-module isomorphic to M. Show that M is a free R-module.
- 2. Let V be a vector space over \mathbb{Q} . For $v_1, v_2, v_3 \in V$, define

$$
f(v_1, v_2, v_3) := \sum_{\sigma \in S_3} sgn(\sigma) v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes v_{\sigma(3)} \in V \otimes_{\mathbb{Q}} V \otimes_{\mathbb{Q}} V.
$$

Show that $f(v_1, v_2, v_3) = 0$ if and only if v_1, v_2, v_3 are Q-linearly dependent.

Part IV. Let X be an indeterminate.

- 1. Let $K \leq E$ be fields such that $[E: K] = 2022$ and E/K is Galois. Show the existence of a cubic polynomial $f \in K[X]$ such that f is irreducible in $K[X]$ and has 3 distinct roots in E.
- 2. Let p be a prime number, let G_p denote the Galois group of $X^6 p$ over $\mathbb Q$ and let

$$
\mathfrak{L} := \{ S_6, A_6, S_4 \times S_3, \mathbb{Z}_{12}, S_3 \times S_2, \mathbb{Z}_6, S_3 \times \mathbb{Z}_6, A_3 \times \mathbb{Z}_6, \mathbb{Z}_2 \times \mathbb{Z}_6 \}.
$$

Determine, with proof, the set of all $H \in \mathfrak{L}$ such that H is isomorphic to G_p for some prime p.

Algebra Preliminary Examination

January 2022

Attempt all questions, and justify each answer.

Part I

- 1. Let G be a group of order $5175 = 3^2 \cdot 5^2 \cdot 23$. Prove that if H is a normal subgroup of order 23 in G , then H is contained in the center of G .
- 2. Let G be a group of order 2k, where k is an odd positive integer. For each element $g \in G$ let σ_g denote the permutation $x \mapsto g x$ of G, and let $\Gamma = {\sigma_g \mid g \in G}$.
	- (a) Prove that Γ contains an odd permutation.
	- (b) Prove that G has a subgroup of order k .

Part II

- 1. Let R be the ring $\mathbb{Z}[\sqrt{2}]$, consisting of all real numbers $a + b\sqrt{2}$ with $a, b \in \mathbb{Z}$. Prove that R is a Euclidean domain, with respect to the norm $N(a + b\sqrt{2}) = |a^2 - 2b^2|$.
- 2. Let R be a commutative ring with $1 \neq 0$. Prove that if every proper ideal of R is a prime ideal, then R is a field.

Part III

- 1. Let R be a commutative ring with $1 \neq 0$. It is assumed that for each ideal I of R the quotient ring R/I is given the natural R-module structure $r.(x + I) = (rx) + I$.
	- (a) Let I, J be ideals of R. Prove that $R/I \otimes_R R/J$, $R/(I+J)$ are isomorphic as R-modules.
	- (b) Let M_1 , M_2 be distinct maximal ideals of R. Prove that $R/M_1 \otimes_R R/M_2 = 0$.
- 2. Let R be the polynomial ring $\mathbb{Z}[x]$, and let $I = (2, x)$, the ideal of R generated by the elements 2, x. Define R-module homomorphisms $\sigma: R \to R \oplus R$, $\tau: R \oplus R \to I$ as follows: $\sigma(h) = (xh, -2h)$, $\tau(f, g) = 2f + xg$.
	- (a) Prove that $0 \to R \stackrel{\sigma}{\to} R \oplus R \stackrel{\tau}{\to} I \to 0$ is a short exact sequence of R-module homomorphisms.
	- (b) Prove that I is not a projective R -module.

In this part, x denotes an indeterminate. Part IV

- 1. Let $f \in \mathbb{Q}[x]$ be irreducible, with splitting field E over \mathbb{Q} . Assume that the degree of E over \mathbb{Q} is an odd integer, and that E contains an intermediate field K with $[K: \mathbb{Q}] = 3$. Prove that the irreducible factors of f , considered as a polynomial over K , all have the same degree. *Hint*: First show that K is a normal extension of \mathbb{Q} .
- 2. Let G be the Galois group of the polynomial $f = x^4 + 2x^2 + 4 \in \mathbb{Q}[x]$. Determine the order of G , and describe how each element of G permutes the roots of f .

Algebra Preliminary Examination

August 2021

Attempt all questions, and justify each answer.

Part I

- 1. Let G be a group. Recall that the *commutator subgroup* $[G, G]$ of G is the subgroup generated by all commutators $[g_1, g_2] = g_1^{-1} g_2^{-1} g_1 g_2$ $(g_1, g_2 \in G)$. Also recall that a subgroup H of G is *characteristic in* G , written H char G , if each automorphism of G maps H onto itself.
	- (a) Define subgroups $G^{(n)}$ $(n \in \mathbb{Z}, n \ge 0)$ inductively as follows:

$$
G^{(0)} = G \quad , \quad G^{(n+1)} = [G^{(n)}, G^{(n)}] \; .
$$

Prove that $G^{(n)}$ char G for all $n \geq 0$.

(b) Suppose that G is a non-trivial finite group, such that $G^{(n)} = 1$ for some $n > 0$. Prove that G has a non-trivial characteristic subgroup of prime power order. (*Hint:* consider the subgroup $G^{(n-1)}$, where *n* is the smallest integer for which $G^{(n)} = 1$.)

2. The *holomorph* of a group G, denoted Hol(G), is defined to be the semidirect product $G \rtimes_{\phi} \text{Aut}(G)$, where ϕ : Aut $(G) \rightarrow$ Aut (G) is the identity map. Thus we may identify Aut (G) with the subgroup $K = \{(1, \sigma) : \sigma \in Aut(G)\}\$ of the semidirect product $Hol(G)$. As usual we identify G with the (normal) subgroup $\{(g, 1) : g \in G\}$ of $Hol(G)$.

Let $G = \{1, z_1, z_2, z_3\}$ be the non-cyclic group of order 4 (*i.e.* G is isomorphic to $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$). Prove that $Hol(G)$ is isomorphic to the symmetric group S_4 . (*Hint:* Consider the action by left multiplication of Hol(G) on the four left cosets K , z_1K , z_2K , z_3K of K .)

Part II

- 1. Let R be an integral domain with the property that every ideal generated by two elements of R is principal.
	- (a) Prove that every finitely generated ideal of R is principal.

(b) Suppose that R also satisfies the ascending chain condition on principal ideals, *i.e.* given any chain of principal ideals $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$, there exists a positive integer k such that $I_k = I_{k+n}$ for all positive integers n . Prove that R is a principal ideal domain.

2. Recall that an element *e* of a ring *R* is *idempotent* if $e^2 = e$. In this question all rings are assumed to be commutative and with $1 \neq 0$.

(a) Let R be a ring containing an idempotent e distinct from $0, 1$. Prove that R is isomorphic to a direct product of two rings. (*Hint*: if e is idempotent, then so is $1 - e$.)

(b) Suppose that R is a finite ring and that every element of R is idempotent. Prove that R is isomorphic to the direct product of finitely many copies of the field with two elements.

Part III *In this part, all R–modules M are assumed to be unital, i.e.* $1.m = m$ *for all* $m \in M$.

1. Recall that given left R-modules D, M, N, an R-module homomorphism $\phi : M \to N$ induces a homomorphism of Abelian groups ϕ' : Hom $_R(D, M) \to \text{Hom}_R(D, N)$ given by $\phi'(\alpha) = \phi \circ \alpha$. Let R be a ring with $1 \neq 0$ and let D, L, M, N be left R-modules. Prove that if the sequence

$$
0 \to L \xrightarrow{\phi} M \xrightarrow{\psi} N \to 0
$$

of module homomorphisms is exact, then the sequence of induced homomorphisms of Abelian groups

$$
0 \to \text{Hom}_R(D, L) \xrightarrow{\phi'} \text{Hom}_R(D, M) \xrightarrow{\psi'} \text{Hom}_R(D, N)
$$

is also exact.

- 2. Let $I = (2, x)$ be the ideal generated by 2 and x in the ring $R = \mathbb{Z}[x]$, x being an indeterminate. The ring $R/I \cong \mathbb{Z}/2\mathbb{Z}$ inherits from R a natural R–module structure, with annihilator I.
	- (a) Show that there is an R–module homomorphism from $I \otimes_R I$ to $\mathbb{Z}/2\mathbb{Z}$ mapping $p(x) \otimes q(x)$ to $\frac{p(0)}{2}$ $\frac{100}{2}q'(0)$, where q' denotes the usual polynomial derivative of q. (b) Show that $2 \otimes x \neq x \otimes 2$ in $I \otimes_R I$.

Part IV *In this part,* x *denotes an indeterminate.*

1. This question concerns the polynomial $f(x) := x^{p^n} - x + 1 \in \mathbb{F}_p[x]$ $(n \ge 1)$. We take some fixed algebraic closure A of \mathbb{F}_p , and denote by \mathbb{F}_{p^k} the unique field of order p^k contained in A. You may assume that each extension of finite degree of \mathbb{F}_p is Galois over \mathbb{F}_p , with cyclic Galois group generated by the Frobenius automorphism $\phi : a \mapsto a^p$.

(a) Let E be the splitting field over \mathbb{F}_p of $f(x) = x^{p^n} - x + 1$ in A. Show that E contains \mathbb{F}_{p^n} as a subfield. (*Hint:* If α is a root of $f(x)$, then so is $\alpha + a$ for each $a \in \mathbb{F}_{p^n}$.)

(b) Determine the order of the Frobenius automorphism $\phi : E \to E$, $\phi : \beta \mapsto \beta^p$. (*Hint:* First compute $\phi^n(\alpha)$, where α is a root of $f(x)$.

(c) Show that if $f(x)$ is irreducible over \mathbb{F}_p , then $pn = p^n$. [*Observation (you may omit the easy proof)*: from $pn = p^n$ it follows that $n = 1$ or $n = p = 2$.]

2. Determine the Galois group over \mathbb{Q} of $x^4 + 9$, describing how each automorphism permutes the roots of this polynomial.

Algebra Preliminary Examination

January 2021

Attempt all questions, and justify each answer.

Part I

- 1. Let p be a prime, and let S_p denote the symmetric group of degree p. Prove that if P is a subgroup of S_p of order p, then the normalizer of P in S_p has order $p(p - 1)$.
- 2. Classify, up to isomorphism, the groups of order 63 .

Part II

- 1. A *local ring* is a commutative ring with $1 \neq 0$ that has a unique maximal ideal. Prove that if R is a local ring with maximal ideal M, then every element of $R \setminus M$ is a unit. Also prove that if R is a commutative ring with $1 \neq 0$, in which the set of nonunits forms an ideal M, then R is a local ring with maximal ideal M .
- 2. Let $p \in \mathbb{Z}_+$ be prime, and let $\mathbb{Z}[i]$ denote the usual ring of Gaussian integers $\{a+bi \mid a, b \in \mathbb{Z}\}\$. For which p is the quotient ring $\mathbb{Z}[i]/(p)$ (i) a field, (ii) a product of fields? Justify your answer. (You may use the following facts: (i) $\mathbb{Z}[i]$ is a Euclidean Domain with respect to the field norm, hence is also a Unique Factorization Domain, and (ii) a prime $p \in \mathbb{Z}_+$ with $p \equiv 1 \pmod{4}$ can be written as the sum of two integer squares.)

Hint: Use the Chinese Remainder Theorem where appropriate. Also note that a product of fields cannot contain a nonzero nilpotent element.

Part III

- 1. Let V be a finite dimensional vector space over a field F , and let v_1 , v_2 be nonzero elements of V. Prove that $v_1 \otimes v_2 = v_2 \otimes v_1$ in $V \otimes_F V$ if and only if $v_1 = \lambda v_2$ for some $\lambda \in F$.
- 2. Let R be a ring with $1 \neq 0$, let P, M, N be R-modules, and let there be an exact sequence of *R*–module homomorphisms $M \stackrel{\phi}{\rightarrow} N \rightarrow 0$.

(a) Prove that if P is a direct summand of a free R –module, then the induced sequence of Abelian group homomorphisms

$$
\operatorname{Hom}_R(P, M) \xrightarrow{\phi'} \operatorname{Hom}_R(P, N) \to 0
$$

is exact. *(Here* ϕ' *is the homomorphism* $\psi \mapsto \phi \circ \psi$.)

(b) Show by means of an example that in general the induced sequence $\text{Hom}_R(P, M) \stackrel{\phi'}{\rightarrow}$ \rightarrow $\text{Hom}_R(P, N) \to 0$ need not be exact.

Note: For this question do not assume any result concerning projective modules.

Part IV *In this part,* x *denotes an indeterminate.*

1. This question concerns the splitting field over $\mathbb Q$ of the polynomial $x^4 - 2x^2 - 2 \in \mathbb Q[x]$.

(a) Prove that $x^4 - 2x^2 - 2$ is irreducible over Q, and that its roots in $\mathbb C$ are $\pm \alpha$, $\pm \beta$, where $\alpha = \sqrt{1 + \sqrt{3}}$, $\beta = \sqrt{1 - \sqrt{3}}$.

(b) Prove that $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\beta)$, and that $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)] = 2$.

(c) Prove that the splitting field of $x^4 - 2x^2 - 2$ has degree 8 over \mathbb{Q} , and that the Galois group of this polynomial over $\mathbb Q$ is dihedral of order 8 .

Hint for (c): The Galois group acts faithfully on the set of roots of the polynomial.

2. Let \mathbb{F}_p denote the field of order p, let $f \in \mathbb{F}_p[x]$ be irreducible over \mathbb{F}_p , and let K be a splitting field for f over \mathbb{F}_p .

Let L be an intermediate field, *i.e.* $\mathbb{F}_p \subseteq L \subseteq K$. Prove that the irreducible factors of the polynomial f in $L[x]$ all have the same degree.

Hint: Here is one approach. Let $g \in L[x]$ be a factor of f that is irreducible in $L[x]$, and let α be a root of g in K. Consider the relationship between $[L(\alpha): L]$ and $[K: L]$.

Algebra Preliminary Examination

August 2020

Attempt all questions, and justify each answer.

Part I

1. Let P be a Sylow p–subgroup of a finite group G. If p is the smallest prime dividing $|G|$ and P is cyclic, prove that $N_G(P) = C_G(P)$. (Recall that $N_G(P)$, $C_G(P)$ denote the normalizer and centralizer of P in G , respectively.)

(*Hint*: Consider the order of the automorphism group of P and the action of $N_G(P)$ on P by conjugation.)

2. (a) Prove that a group of order 105 contains a cyclic normal subgroup of order 35.

(b) Prove that, up to isomorphism, there is just one non-Abelian group of order 105 .

In parts II, III and IV, X *denotes an indeterminate.*

Part II

1. Let R be a commutative ring with $1 \neq 0$. Recall that R is *Artinian* if it satisfies the descending chain condition on ideals, *i.e.* if $I_1 \supseteq I_2 \supseteq \dots$ is a descending chain of ideals of R, then there exists $k \in \mathbb{Z}_+$ such that $I_m = I_k$ for all $m > k$.

Let S be an arbitrary commutative ring with $1 \neq 0$, and let J denote the Jacobson radical of $S[X]$. Prove that $S[X]/J$ is not Artinian.

- 2. Let R be the subring of $\mathbb{Q}[X]$ consisting of all polynomials whose constant term is an integer.
	- (a) Prove that R is an integral domain in which every irreducible element is prime.
	- (b) Prove that R is not a Unique Factorization Domain. (*Hint:* Consider factorizations of the element X .)

Part III

- 1. Let k be a field, and let $R = M_2(k)$ be the ring of 2×2 matrices over k. Let P be the set of 2×1 matrices over k : then P is an Abelian group under matrix addition, and left matrix multiplication of elements of P by elements of R accords P the structure of a left R –module. Prove that the R –module P is projective, but not free.
- 2. Let $R = \mathbb{Z}[X]$, let $I \subset R$ be the ideal generated by 2, X, and let $M = I \otimes_R I$. Prove that the element $2 \otimes 2 + X \otimes X \in M$ cannot be written as a simple tensor $a \otimes b$ $(a, b \in I)$. (*Hint:* Use a suitable R–module homomorphism defined on M .)

- **1.** Prove that $\mathbb{Q}(\sqrt{5+2\sqrt{5}})$ is a Galois extension of \mathbb{Q} , and determine its Galois group.
- 2. Let F be a field (possibly infinite) of finite characteristic p, and let $a \in F$ be an element not of form $b^p - b$ for any $b \in F$. Let $f = X^p - X - a \in F[X]$.
	- (a) Prove that the polynomial f is separable and irreducible over F .
	- (b) Prove that if α is a root of f in an extension field of F, then $F(\alpha)$ is a splitting field for f over F .
	- (*Hint:* Consider the effect of substituting $X + 1$ for X in the polynomial f.)

JANUARY 2020

Instructions: Attempt all problems in all four parts. Justify each answer.

General Assumptions: Unless explicitly stated otherwise, all rings have $1 \neq 0$ [and their subrings contain 1 and all modules are unitary.

Part I

1. Let G be a finite group and $\phi: G \to H$ a *surjective* homomorphism. Prove that if $y \in H$ is such that $|y| = p^r$, for some prime p and $r \in \mathbb{Z}_{>0}$, then there is $x \in G$ such that $\phi(x) = y$ and $|x| = p^s$, for some $s \in \mathbb{Z}_{>0}$.

[Hint: Let $g \in G$ such that $\phi(g) = y$, and write $|g| = n \cdot p^k$, where $p \nmid n$.]

2. Let G be a group of order 60 and assume that 4 divides $|Z(G)|$ where $Z(G)$ denotes the *center* of G . Prove that G must be Abelian.

Part II

- 1. Let I be the ideal of $\mathbb{Z}[x]$ generated by 7 and $x^2 + 1$. Prove that I is a maximal ideal.
- **2.** Let R be an *integral domain* such that for any descending chain of ideals

$$
I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots
$$

there is a positive integer N such that $I_i = I_N$ for all $i \geq N$. Prove that R is a field.

Part III

- 1. Let R be a subring of S. Prove that $S \otimes_R S \neq 0$.
- **2.** Let R be a ring containing Z such that R is a free Z-module of finite rank $n > 0$ and every non-zero ideal of R has a non-zero element of \mathbb{Z} . Prove that for every non-zero ideal I we have that R/I is finite.

- 1. Given a prime p and a positive integer n , show that there is an *Abelian* extension [i.e., Galois with Abelian Galois group] K of Q with $[K: \mathbb{Q}] = p^n$.
- **2.** Let F be a field of characteristic p with exactly p^r elements. If K is a finite extension of F with $K = F[\alpha]$, for some $\alpha \in K$, and f is the minimal polynomial of α over F, then show that if β is another root of f, then $\beta \in K$ and $\beta = \alpha^{p^k}$ for some $k \in \mathbb{Z}$.

AUGUST 2019

Instructions: Attempt all problems in all four parts. Justify each answer.

General Assumptions: Unless explicitly stated otherwise, all rings have $1 \neq 0$ [and their subrings contain 1] and all modules are unitary.

Part I

- 1. Let G_1 , G_2 be groups, $N \leq G_1$, and $\phi : G_1 \to G_2$ be an onto homomorphism such that $N \cap \text{ker}(\phi) = \{1\}$. Prove that for $x \in N$ we have that $C_{G_2}(\phi(x)) = \phi(C_{G_1}(x))$. [Remember: $C_G(x) \stackrel{\text{def}}{=} \{g \in G : gx = xg\}$ is the centralizer of x in G.
- 2. Let G be a group of order $992 = 2^5 \cdot 31$. Prove that either G has a normal subgroup of order $32 = 2^5$ or it has a normal subgroup of order 62.

Part II

- 1. Let R be a UFD with exactly two non-associate prime elements p and q [i.e., p and q are non-associate primes and every prime is an associate of either p or q . Prove that R is a PID.
- **2.** Let R be a PID and P a prime ideal of R[x] such that $P \cap R \neq \{0\}$. Prove that there is $p \in R$ prime in R such that either $P = (p)$ or $P = (p, f)$ for some f prime in R[x].

Part III

- 1. Let R be a commutative ring and M an R-module. Prove that $R \otimes_R \text{Hom}_R(R \oplus R, M)$ is projective if and only if M is projective.
- 2. Let R be a commutative ring, M and N be R-modules and M' and N' be submodules of M and N respectively. Define L as the submodule of $M \otimes_R N$ generated by the set

 $\{x \otimes y \in M \otimes_R N : x \in M' \text{ or } y \in N'\}.$

Show that $M/M' \otimes_R N/N' \cong (M \otimes_R N)/L$.

- 1. Let $F = \mathbb{Q}(\sqrt[3]{2} \cdot \zeta)$, where $\zeta = -1/2 + \sqrt{3}i/2$ [a primitive third root of unity]. Prove that -1 is not a sum of squares in F, i.e., there is no positive integer n and $\alpha_1, \ldots, \alpha_n \in F$ such that $-1 = \alpha_1^2 + \cdots + \alpha_n^2$.
- 2. Let F be a field of characteristic 0 and K/F be a field extension of degree n such that there is a root of unity ζ in the algebraic closure of K such that $K \subseteq F[\zeta]$. Prove that if $d | n$, there is $\alpha \in K$ such that the minimal polynomial of α over F has degree d.

AUGUST 2018

Instructions: Attempt all problems in all four parts. Justify your answers.

General assumptions: All rings have $1 \neq 0$, their subrings contain 1, and all modules are unitary.

Part I

- 1. Let G be a (possibly infinite) group, and suppose that G contains a subgroup $H \neq G$ whose index $[G:H]$ is finite. Prove that G contains a normal subgroup $N \neq G$ of finite index.
- 2. Prove that every group of order 70 contains a cyclic, normal subgroup of order 35.

Part II

- 1. Let R be a commutative ring in which every element is either a unit or nilpotent. Prove that R has exactly one prime ideal.
- 2. If R is an integral domain, prove that there are infinitely many ideals in $R[x]$ that are both prime and principal.

Part III

1. Let R be a ring, possibly non-commutative, and suppose that

 $0 \to M' \to M \to M'' \to 0$

is a short exact sequence of left R-modules, with M' and M'' finitely generated. Prove that M is finitely generated.

2. Let M be a finitely-generated Z-module, and let $T \subset M$ be its torsion submodule. Show that the torsion submodule of $M \otimes_{\mathbb{Z}} M$ has at least $|T|$ elements.

- 1. Let p be a prime and suppose that $f \in \mathbb{F}_p[x]$ is an irreducible polynomial. Let K be a degree 2 extension of \mathbb{F}_p and suppose that there exist non-constant polynomials $g, h \in K[x]$ such that $f = gh$. If g is an irreducible polynomial of degree 5, what is the degree of f ?
- 2. Suppose that $f \in \mathbb{Q}[x]$ is an irreducible degree 4 polynomial, and K/\mathbb{Q} is an extension such that f has exactly one root in K. Let G be the Galois group of f, and show that $|G|$ is divisible by 12.

AUGUST 2017

Instructions: Attempt all problems in all four parts. Justify your answer.

General Assumptions: Unless explicitly stated otherwise, all rings have $1 \neq 0$ [and their subrings contain 1 and all modules are unitary.

Part I

- 1. Suppose that H is a subgroup of a finite group G of index p, where p is the smallest prime dividing the order of G . Prove that H is normal in G .
- 2. Show that every group of order 222 is solvable. Fun fact: The University of Tennessee was established 222 years ago.

Part II

- 1. Let I and J be ideals of a ring R and assume that P is a prime ideal of R that contains $I \cap J$. Prove that either I or J is contained in P.
- 2. Let R be an integral domain and suppose that every prime ideal in R is principal. Prove that R is a PID.

Part III

- 1. Let V be a Noetherian right R-module, and $\theta: V \to V$ a homomorphism. (a) Show that $\ker(\theta^{n+1}) = \ker(\theta^n)$ for some $n \geq 1$.
	- (b) If θ is onto, show that it is one-to-one.
- 2. An R-projection is defined to be an R-module homomorphism $\varphi : R^n \to R^n$ such that $\varphi^2 = \varphi$. Prove that a finitely generated R-module M is projective if and only if it is isomorphic to the image of some R -projection.

- 1. Let $F \subseteq E$ be fields and suppose $0 \neq \alpha \in E$ with $E = F(\alpha)$. Assume that some power of α lies in F and let n be the smallest positive integer such that $\alpha^n \in F$.
	- (a) If $\alpha^m \in F$ with $m > 0$, show that m is a multiple of n.
	- (b) If E is a separable extension of F, prove that the characteristic of F does not divide n.
	- (c) If every root of unity of E lies in F, show that $[E : F] = n$.
- 2. Let F be a field of characteristic 0 and let E be a finite Galois extension of F .
	- (a) If $0 \neq \alpha \in E$ with $E = F(\alpha)$, show that $F(\alpha^2) \neq E$ if and only if there exists $\sigma \in Gal(E/F)$ with $\sigma(\alpha) = -\alpha$.
	- (b) Prove that there exists an element $\alpha \in E$ with $E = F(\alpha^2)$.

ALGEBRA PRELIMINARY EXAMINATION SPRING 2017

• Attempt all four parts. Justify your answers.

Part I.

- 1. Show that a group of order 255 is not a simple group.
- 2. A group G has a cyclic normal subgroup of order 2016. If G also has a subgroup of order 2017, then show that G has a cyclic subgroup of order $(2016) \times (2017)$.

Part II.

Note: *Rings* are assumed to be commutative and with $1 \neq 0$.

- 1. Let A and B be rings. Show that each ideal of $A \times B$ is of the form $I \times J$, where I is an ideal of A and J is an ideal of B .
- 2. Let R be a ring, let X be an indeterminate and let $S := \{X^n | 0 \le n \in \mathbb{Z}\}\$. If $S^{-1}R[[X]]$ is a field, then show that R is a field.

Part III.

Note: Rings are assumed to be commutative with $1 \neq 0$ and modules are assumed to be unitary.

- 1. Let A be a ring and let M , N be finitely generated projective (left) A-modules. Show that $Hom_A(M, N)$ is a finitely generated projective A-module.
- 2. Let R be a PID and let I, J be ideals of R. If $I \neq R \neq J$, then show that $(R/I) \oplus (R/J)$ and $(R/I) \otimes_R (R/J)$ are not isomorphic as (left) R-modules.

Part IV.

Note: In what follows, X is an indeterminate.

- 1. Let K be an extension-field of Q such that K/\mathbb{Q} is Galois with Galois group \mathbb{Z}_{30} . Suppose each of $f, g \in \mathbb{Q}[X]$ is an irreducible polynomial of degree 6 and f has a root $a \in K$. If g has a root in K, then show that g has all its roots in $\mathbb{Q}[a]$.
- 2. Let $F \subset K$ be finite fields of characteristic 5 and suppose $g \in F[x]$ is irreducible in $F[x]$. If g has degree 11, then show that either g is irreducible in $K[x]$ or all its roots are in K.

ALGEBRA PRELIMINARY EXAMINATION **Fall 2016**

• Attempt all four parts. Justify your answers.

Part I.

- 1. Let p be a prime number and G be a non-Abelian group of order p^3 . Show that G has at least 3 (distinct) subgroups of index p .
- 2. Let G be a group of order p^3q , where p, q are distinct prime numbers. If no Sylow p-subgroup of G is normal and also no Sylow q-subgroup of G is normal, then show that G has order 24.

Part II.

Note: *Rings are tacitly assumed to be commutative and with* $1 \neq 0$.

- 1. Let R be a ring, X an indeterminate and $h: R[X] \to R[[X]]$ a ring-homomorphism such that $h(a) = a$ for all $a \in R$. Show that h is not surjective.
- 2. Let R be an integral domain with at least 3 (distinct) maximal ideals. Given maximal ideals M and N of R, show that $R_M \cap R_N \neq R$. (Here localization of R at a prime ideal is naturally identified as a ring in between R and the quotient-field of R .)

Part III.

Note: Rings are assumed to be commutative and with $1 \neq 0$ and modules are assumed to be unitary.

- 1. Let R be a ring and let $a \in R$ be a nonzero element of R such that $a^3 = a$. Show that the ideal Ra is a projective R -module.
- 2. Let R be a PID and let M be a finitely generated R-module. For a maximal ideal Q of R, let $\delta(Q, M)$ denote the dimension of $M \otimes_R R/Q$ as a vector-space over the field R/Q . Let $\delta(M)$ denote the sup $\{\delta(Q, M)\}\,$, where the supremum is taken over all maximal ideals Q of R. Show that as an R-module, M has a generating set of cardinality $\delta(M)$ and any generating set of M has cardinality at least $\delta(M)$.

Part IV.

Note : In what follows, X is an indeterminate.

- 1. Let $f(X)$ be a monic polynomial with rational coefficients. Assume $f(X)$ is irreducible in $\mathbb{Q}[X]$ and the Galois-group of $f(X)$ over Q is a group of order 99. What is the degree of $f(X)$?
- 2. Compute the Galois group of X^6 9 over \mathbb{Q} .

JANUARY 2016

Instructions: Attempt all problems in all four parts. Justify each answer.

General Assumptions: Unless explicitly stated otherwise, all rings have $1 \neq 0$ [and their subrings contain 1] and all modules are unitary.

Part I

- 1. Let G be a finite group and H be a subgroup of G. Prove that $n_p(H) \leq n_p(G)$, where $n_p(X)$ denotes the number of Sylow p-subgroups of X.
- **2.** Let G be a group of order p^n for some prime p and positive integer n. Prove that if $1 \neq H \leq G$, then $Z(G) \cap H \neq 1$. [Here $Z(G)$ denotes the center of G.]

Part II

- 1. Let R be a Boolean ring, i.e., a ring [with 1] for which $a^2 = a$ for all $a \in R$. [You can use without proof the well known fact that if R is Boolean, then it is commutative of characteristic 2.
	- (a) Prove that if R is finite, then its order is a power of 2.
	- (b) Prove that every prime ideal of R is maximal.
- **2.** Show that $R \stackrel{\text{def}}{=} \mathbb{Z}[x_1, x_2, x_3, \ldots]/(x_1x_2, x_3x_4, x_5x_6, \ldots)$ has infinitely many distinct *minimal* prime ideals. [*P* is a minimal prime ideal if it is prime and whenever $Q \subseteq P$, with *Q* also prime, we have $Q = P$.

Part III

- 1. Let F be a field and M be a torsion F[x]-modulo. Prove that if there is $m_0 \in M$, with $m_0 \neq 0$, and an *irreducible* $f \in F[x]$ such that $f \cdot m_0 = 0$, then $\text{Ann}(M) \subseteq (f)$.
- **2.** Let R be an integral domain and I a principal ideal of R. Prove that $I \otimes_R I$ has no non-zero torsion element [i.e., if $m \in I \otimes_R I$, with $m \neq 0$, and $r \in R$ with $rm = 0$, then $r = 0$].

- 1. Let K/F be an algebraic field extension and $Emb(K/F)$ denote the set of field homomorphisms $\sigma: K \to \overline{K}$ such that $\sigma(a) = a$ for all $a \in F$. [Here \overline{K} is a fixed algebraic closure of $K.$
	- (a) Prove that if α is a root of a [not necessarily irreducible] non-zero polynomial $f \in F[x]$ with $\deg(f) = n$, then $\text{Emb}(F[\alpha]/F)$ has at most *n* elements.
	- (b) Give an example of an algebraic extension K/F of degree greater than one for which $Emb(K/F)$ has a single element.
- 2. Let $F = \mathbb{Q}[\sqrt{2}]$ and $K = \mathbb{Q}[\sqrt[8]{2}, i]$.
	- (a) Prove that K/F is Galois with $[K : F] = 8$.
	- (b) Prove that $Gal(K/F)$ has a non-normal subgroup. [This implies that it is the dihedral group of order 8, as it is the only group of order 8 with this property.

AUGUST 2015

Instructions: Attempt all problems in all four parts. Justify each answer.

General Assumptions: Unless explicitly stated otherwise, all rings have $1 \neq 0$ [and their subrings contain 1] and all modules are unitary.

Part I

- 1. Let G be a non-Abelian group of order p^3 , $[G,G] = \langle xyx^{-1}y^{-1} : x, y \in G \rangle$ be its commutator subgroup and $Z(G)$ be its center. Show that $|Z(G)| = p$ and that $Z(G) = [G, G]$.
- 2. Let G_1 and G_2 be groups of order 81 acting *faithfully* [i.e., only 1 acts as the identity function] on sets X_1 and X_2 , respectively, with 9 elements each. Show that there is an isomorphism $\psi: G_1 \to G_2$.

Part II

- **1.** Let D be a *finite* division ring. Prove that D has a prime power number of elements. [Hint: Consider the center $Z(D) = \{a \in D : ax = xa \text{ for all } x \in D\}.$
- 2. Let $p \in \mathbb{Z}$ prime and

$$
f = a_{2n+1}x^{2n+1} + \cdots + a_1x + a_0 \in \mathbb{Z}[x].
$$

Prove that if $p^3 \nmid a_0, p^2 \mid a_0, a_1, \ldots, a_n, p \mid a_{n+1}, a_{n+2}, \ldots, a_{2n}$ and $p \nmid a_{2n+1}$, then f is irreducible in $\mathbb{Q}[x]$.

Part III

1. Let R be a commutative ring. An R -module is *Artinian* if it satisfies the *descending chain* condition for submodules. [I.e., if $S_1 \supseteq S_2 \supseteq S_3 \supseteq \cdots$ is a chain of submodules, then there is a i_0 such that for all $i \geq i_0$, we have $S_i = S_{i_0}$. Show that if L and N are Artinian R-modules and we have a short exact sequence

$$
0 \longrightarrow L \xrightarrow{\psi} M \xrightarrow{\phi} N \longrightarrow 0,
$$

then M is also Artinian.

2. Let R be a commutative ring such that every R-module is free. Prove that R is a field.

- 1. Let \mathbb{F}_p be the field with p elements, and t be an indeterminate. Let $f(t), g(t) \in \mathbb{F}_p[t] \setminus \{0\},$ with max $\{\deg f, \deg g\} < p$ and $f(t)/g(t) \notin \mathbb{F}_p$. Show that the extension $\mathbb{F}_p(t)/\mathbb{F}_p(f(t)/g(t))$ is separable.
- 2. Suppose that $f = \prod_{i=1}^N (x \alpha_i) \in \mathbb{Q}[x]$ [with $\alpha_i \in \mathbb{C}$] is *irreducible* in $\mathbb{Q}[x]$ and let $f_n \stackrel{\text{def}}{=}$ $\prod_{i=1}^{N} (x - \alpha_i^n)$. Prove that for each n, there is $g_n \in \mathbb{Q}[x]$ irreducible and a positive integer k_n such that $f_n = g_n^{k_n}$.

ALGEBRA PRELIMINARY EXAMINATION **Fall 2014**

Attempt all four parts. Justify your answers.

Part I.

- 1. Show that S_4 (the group of permutations of $\{1,2,3,4\}$) does not have a subgroup isomorphic to Q_8 (the quaternion-group of order 8).
- 2. Let G be a group of order 2014. Show that G is cyclic if and only if G has a normal subgroup of order 2.

Part II.

Note: Rings are assumed to be commutative and with $1 \neq 0$, subrings are assumed to contain 1 and ring-homomorphisms are assumed to map 1 to 1.

- 1. Let R be an integral domain with only finitely many units. Show that the intersection of all maximal ideals of R is 0.
- 2. Let R be a ring such that each non-unit of R is nilpotent. Let X be an indeterminate and let $f \in R[[X]]$. Show that $f^n = f$ for some integer $n \geq 2$ if and only if either $f = 0$ or $f^{n-1} = 1$.

Part III.

Note: Rings are assumed to be commutative and with $1 \neq 0$ and modules are assumed to be unitary.

- 1. Let L be a module over a ring R and let M , N be R-submodules of L. Show that if $(M + N)/(M \cap N)$ is a projective R-module then $M/(M \cap N)$ is also a projective R-module.
- 2. Let R be a PID with infinitely many prime ideals and let M be a finitely generated R-module. Show that M is a torsion R-module if and only if $M \otimes_R R/P = 0$ for all but finitely many prime ideals P of R .

Part IV.

Note: In what follows, X is an indeterminate.

- 1. Let $f(X) := X^5 + 3X^3 + X^2 + 3 \in \mathbb{Q}[X]$. Let K be the splitting field of $f(X)$ over Q. Compute $[K:\mathbb{Q}].$
- 2. Let $f(X) := X^3 + X + 1 \in \mathbb{Q}[X]$. Let F be a finite Galois extension of Q such that the Galois group of F over $\mathbb Q$ is an Abelian group. Show that f is irreducible in $F[X]$.

Algebra Preliminary Exam January 2014

Attempt all problems and justify all your answers. All rings have a $1 \neq 0$, all ring homomorphisms send 1 to 1, and all R-modules are unitary.

Part I. Groups

- 1. Show that every group of order 1,225 is abelian.
- Let $n \geqslant 2$. Show that there is a nontrivial homomorphism $2.$
	- f : $S_n \rightarrow \mathbb{Z}/n\mathbb{Z}$ (i.e., kerf $\neq S_n$) if and only if n is even.

Part II. Rings

- 1. Let R be a commutative ring. Show that $J(R[X]) = nil(R[X])$. $(J(A)$ and $nil(A)$ are the Jacobson and nil radicals of A.)
- 2. Let R be a PID.
	- (a) Show that R satisfies ACC on ideals.
	- (b) Show that every nonzero prime ideal of R is maximal.

Part III. Modules

- Let R be a ring and M a nonzero R-module. Show that 1. M = AOB for proper submodules A and B of M if and only if there is a nonzero, nonidentity homomorphism $f : M \rightarrow M$ with $f^2 = f$.
- 2. Let R be a commutative ring, I a proper ideal of R, and M an R-module. Show that (R/I) @RM and M/IM are isomorphic as R-modules.

Part IV. Fields

- Let K a subfield of a field F. Show that there is a 1. subring of F containing K that is a PID, but not a field, if and only if the extension F/K is not algebraic.
- Determine the Galois group of $f(X) = X^{10} + X^8 + X^6 + X^2$ 2. over $Z/2Z$.

Algebra Preliminary Exam

August 2013

Attempt all problems and justify all your answers. All rings have an identity $1 \neq 0$, all ring homomorphisms send 1 to 1, and all R-modules are unitary.

Part I.

- (a) Let p and q be (not necessarily distinct) prime $1.$ numbers. Show that a group G with $|G|$ = pq is either abelian or $Z(G) = \{e\}$.
	- (b) Give an example of a nonabelian group G whose order is the product of three (not necessarily distinct) primes and $Z(G) \neq \{e\}$.
- (a) Let G be a group with $|G| = 100$. Show that G is abelian $2.$ if and only if its Sylow 2-subgroup is normal.
	- (b) Give an example of a nonabelian group of order 100.

Part II.

- Let R and S be a commutative rings with $1 \neq 0$. Show that $1.$ every ideal of R×S has the form I×J for I an ideal of R and J an ideal of S.
- Let R be a commutative ring with $1 \neq 0$. Show that $f(X) =$ $2.$ $a_0 + a_1X + \cdots + a_nX^n$ is a unit in R[X] if and only if ao is a unit in R and a_1 , ..., a_n are nilpotent.

Part III

- Let P and Q be finitely generated projective R-modules 1. over a commutative ring R with $1 \neq 0$. Show that Hom_R(P,Q) is a finitely generated projective R-module.
- $2.$ Let R be a commutative ring with $1 \neq 0$, S a nonempty multiplicatively closed subset of R, and M an R-module. Show that $(S^{-1}R) \otimes_R M$ and $S^{-1}M$ are isomorphic as $S^{-1}R$ -modules.

Part IV.

- Let p and q be distinct prime numbers, F a subfield of a $1.$ field K, and $f(X)$, $g(X) \in F[X]$ be irreducible with deg($f(X)$) = p and deg(q(X)) = q. Let a, b \in K be roots of $f(x)$ and $q(X)$, respectively. Show that $[F(a,b):F] = pq$.
- (a) Let F be a splitting field for $f(X) \in \mathbb{Q}[X]$ over Q with $2.$ abelian Galois group G. Show that every subfield L of F is a splitting field over Q for some polynomial

 $g(X) \in \mathbb{Q}[X]$.

(b) Give an example to show that if G is not abelian in part (a), then some L need not be a splitting field.

JANUARY 2013

Instructions: Attempt all problems in all four parts. Justify each answer.

General Assumptions: Unless explicitly stated otherwise, all rings have $1 \neq 0$ [and their subrings contain 1] and all modules are unitary.

Part I

- 1. Let p and q be prime numbers such that $q < p$ and q does not divide $p^2 1$. Prove that every group of order p^2q is Abelian.
- 2. Let G be a finite simple group. Show that if p is the largest prime dividing $|G|$, then there is no subgroup $H \leq G$ such that $1 < |G:H| < p$.

Part II

- 1. Let R be a ring not necessarily having 1 [or commutative], with at least two elements and such that for all non-zero $a \in R$ there is a *unique* $b \in R$ such that $aba = a$.
	- (a) Show that R has no [non-zero] zero divisors.
	- (b) Show that for a and b as above, we also have $bab = b$.
	- (c) Show that R has 1.
- **2.** Let R be a commutative ring and $a \in R$ such that $a^n \neq 0$ for all positive integers n. Let I be an ideal maximal with respect to the property that $a^n \notin I$ for any positive integer n. Show that I is prime.

Part III

- 1. Let $V = \mathbb{R}^2$ and $\{e_1, e_2\}$ be a basis of V. Show that $e_1 \otimes e_2 + e_2 \otimes e_1 \in V \otimes_{\mathbb{R}} V$ cannot be written as a single tensor.
- 2. Let R be a PID.
	- (a) Prove that a finitely generated R -module M is free if and only if it is torsion free.
	- (b) Prove that if a finitely generated R -module M is projective, then it is free.

Part IV

1. Let \mathbb{F}_p be the field with p elements, $\bar{\mathbb{F}}_p$ be a fixed algebraic closure of \mathbb{F}_p and let

$$
L = \{ \alpha \in \mathbb{F}_p : p \nmid [\mathbb{F}_p[\alpha] : \mathbb{F}_p] \}.
$$

Show that L is a field.

- **2.** Let p be a prime, F be a field of characteristic different from p and $f = x^p a \in F[x]$ [not necessarily irreducible. Let K be the splitting field of $x^p - 1$ over F and assume that all roots of f lie in K .
	- (a) Show that if $f(\alpha) = 0$ with $\alpha \notin F$, then $F[\alpha] = K$.
	- (b) Prove that f has a root in F .

AUGUST 2012

Instructions: Attempt all problems in all four parts. Justify each answer.

General Assumptions: All rings have $1 \neq 0$ [and their subrings contain 1] and all modules are unitary.

Part I

- 1. Let G and H be finite Abelian groups. Prove that if $G \times H \times H \cong G \times G \times H$, then $G \cong H$.
- 2. Let p be a prime and G be a group of order p^n . For $k \in \{1, 2, 3, \ldots, (n-1)\}\,$ let s_k and n_k denote the number of subgroups and normal subgroups of G of order p^k respectively. Show that $s_k - n_k$ is divisible by p.

Part II

- 1. Let R be a commutative ring for which every proper ideal is prime. Show that R is a field.
- **2.** Let F be a field and consider the subring R of $F[t]$ given by polynomials with the coefficient of t equal to zero, i.e., $R = F + t^2 F[t]$.
	- (a) Show that R has an irreducible element which is not prime. [Hence, R is not PID.]
	- (b) Show that R is Noetherian. [Hint: Consider a connection between R and $F[x, y]$.]

Part III

1. Let R be a commutative ring, S be a subring of R , A be an R -module and

$$
\mathcal{H} \stackrel{\mathrm{def}}{=} \operatorname{Hom}_R(R \otimes_S (S \oplus S), A).
$$

Show that for every *surjective* homomorphism of R-modules $\phi : M \to N$ and R-module homomorphism $f: \mathcal{H} \to N$ there is an R-module homomorphism $F: \mathcal{H} \to M$ such that $\phi \circ F = f$ if and only if the same if true if we replace H by A.

2. Let R be a commutative ring, D, M and N be R-modules, $\phi : M \to N$ be an R-module homomorphism and $1 \otimes \phi : D \otimes_R M \to D \otimes_R N$ be the homomorphism for which

$$
(1\otimes \phi)(d\otimes m)=d\otimes \phi(m).
$$

- (a) Assume that ϕ is injective. Show that if D is free and of finite rank, then $1 \otimes \phi$ is also injective. [The finite rank is not necessary, but we assume it here for simplicity.]
- (b) Show that the above statement is not true for an arbitrary D .

- 1. Let F be a field and K/F be an algebraic extension. Show that if R is a subring of K with $F \subseteq R \subseteq K$, then R is a field.
- 2. Let F be a field, K/F be a Galois extension and $f \in F[x]$ be monic, separable and irreducible. Show that if $f = f_1 \cdots f_k$ is the factorization of f in K[x], with f_i irreducible and monic, then the f_i 's are distinct, of the same degree and $G \stackrel{\text{def}}{=} \text{Gal}(K/F)$ acts transitively on $\{f_1,\ldots,f_k\}$. [I.e., given $\sigma \in G$, the map $f_i \mapsto f_i^{\sigma}$ is a permutation of the f_i 's and given $i, j \in \{1, ..., k\}$, there is a $\tau \in G$ such that $f_i^{\tau} = f_j$.

ALGEBRA PRELIMINARY EXAMINATION Spring 2012

Attempt all four parts. Justify your answers.

Part I.

- 1. Show that a group of order 455 is necessarily cyclic.
- 2. Let G be a group of order 56. Show that G is solvable.

Part II.

- 1. Let $f: \mathbb{Q} \to \mathbb{Z}$ be a function such that $f(ab) = f(a)f(b)$ for all $a, b \in \mathbb{Q}$. Show that the image of f has at most three elements and there exist an infinite number of such functions whose image has three elements.
- 2. Let R be a PID and let J denote the intersection of all maximal ideals of R. If $a^2 a$ is in J for all $a \in R$, then show that R has only finitely many maximal ideals.

Part III.

Note: Rings are assumed to be commutative and with $1 \neq 0$ and modules are assumed to be unitary.

- 1. Let R be an integral domain and let M, N be projective R-modules. Show that $M \otimes_R N$ is a projective R -module.
- 2. Suppose R is a principal ideal domain that is not a field. Suppose M is a finitely generated R-module such that for every maximal ideal P of R , M/PM is a cyclic R/P -module. Show that M itself is cyclic.

- 1. Let $f(X)$ be a monic polynomial of degree 9 having rational coefficients. Assume that $f(X)$ is irreducible in Q[X]. Let K denote the splitting field of f over Q and let $u \in K$ be a root of f. If $[K: \mathbb{Q}] = 27$, then show that $\mathbb{Q}[u]$ has a subfield L with $[L: \mathbb{Q}] = 3$.
- 2. Let F, K be fields such that K is a finite Galois extension of F with Galois group G. Suppose $a \in K$ is such that $\sigma(a) - a \in F$ for all $\sigma \in G$. If the characteristic of F does not divide the order of G, then show that $a \in F$. Assuming F to be the field of two elements, construct a quadratic field extension $K := F[a]$ of F such that $\sigma(a) - a \in F$ for all $\sigma \in G$.

Algebra Preliminary Exam

 \mathbf{v}

 $\begin{picture}(20,20) \put(0,0){\vector(1,0){30}} \put(15,0){\vector(1,0){30}} \put(15,0){\vector(1$

المريد

January 2011

 \sim

Attempt all problems and justify all your answers. All rings have an identity $1 \neq 0$, all ring homomorphisms send 1 to 1, and all R-modules are unitary.

- 1. Let G be a finite simple group. Show that if G has a I. subgroup H with $[G:H] = n \geq 2$, then $|H|/(n-1)!$.
- α in the α -section List, up to isomorphism, all groups of order 153. $2.$ Justify your answer.
- Let R be a commutative ring and I an ideal of R. Let II. 1. $I^* = (I, X)$ be an ideal of the polynomial ring R[X]. Determine, in terms of I, when I* is a prime ideal of $R[X]$ and when I* is a maximal ideal of $R[X]$. Justify your answers.
	- (a) Show that if a commutative ring R satisfies DCC on $2.$ ideals (i.e., R is Artinian), then R has only a finite number of maximal ideals.
		- (b) Give an example to show that (a) may be false if DCC is replaced by ACC (i.e., if R is Noetherian).
- III. 1. Let $f: M \rightarrow M$ be an R-module homomorphism with $f \cdot f = f$. Show that the following statements are equivalent.
	- (a) f is injective.
	- (b) f is surjective.
	- (c) $f = 1_M$.

 \mathbf{V}

starring uni-

 \sim β

- 2. (a) Let G and H be finitely generated abelian groups such that $\mathbb{Z}_n \otimes G \cong \mathbb{Z}_n \otimes H$ for every integer $n \geq 2$. Show that $G \cong H$. .
Film en anglicer el participad el contro
	- (b) Give an example to show that (a) may be false if G and H are not both finitely generated.
- 1. Let F be a subfield of a field L. Show that L/F is an IV. algebraic extension if and only if every subring R of L containing F is a field.
	- 2. Compute the Galois group of $f(X) = X^4 + X + 1 \in \mathbb{Z}_2[X]$.

ALGEBRA PRELIMINARY EXAMINATION Fall 2011

Attempt all four parts. Justify your answers.

Part I.

- 1. How many Sylow 2-subgroups does S_5 (the group of permutations of $\{1, 2, 3, 4, 5\}$) have ?
- 2. Let G be a group of order 231. Show that G is Abelian if and only if G has an Abelian subgroup of order 21.

Part II.

Note: Rings are assumed to be commutative and with $1 \neq 0$, subrings are assumed to contain 1 and ring-homomorphisms are assumed to map 1 to 1.

- 1. Let R be a UFD such that each maximal ideal of R is a principal ideal. Prove that R is a PID.
- 2. Let $\mathbb{R}[[X]]$ denote the power-series ring in a single indeterminate X over the field of real numbers R. If T is a multiplicative subset of $\mathbb{R}[[X]]$ containing 1 but not containing 0, then show that either $T^{-1}\mathbb{R}[[X]] = \mathbb{R}[[X]]$ or $T^{-1}\mathbb{R}[[X]]$ is a field.

Part III.

Note: Rings are assumed to be commutative and with $1 \neq 0$ and modules are assumed to be unitary.

- 1. Let R be an integral domain and I an ideal of R. Show that there exists a surjective R-module homomorphism $f: I \to R$ if and only if I is a nonzero principal ideal.
- 2. Let K be a field, X an indeterminate over K and M a finitely generated $K[X]$ -module. Show that M is a projective K[X]-module if and only if M is K[X]-module isomorphic to $K[X] \otimes_K V$ for some finite dimensional K -vector space V .

- 1. Let K be a field and F a subfield of K. The group of units of K is denoted by K^{\times} . Suppose $f \in F[X]$ is a monic irreducible polynomial and $a, b \in K^{\times}$ are such that $f(a) = 0 = f(b)$. Show that the subgroup of K^{\times} generated by a, is isomorphic to the subgroup of K^{\times} generated by b.
- 2. Let $f \in \mathbb{Q}[X]$ be a polynomial of degree 4 such that the Galois group of f (over Q) is a group of order 6. Show that f has a root in \mathbb{Q} .

Algebra Preliminary Exam

k,

نۍ د

Example 2010

Attempt all problems and justify all answers. All rings have an identity $1 \neq 0$, ring homomorphisms send 1 to 1, and all R-modules are unitary.

- I. 1. Let $f : G \rightarrow H$ be a surjective homomorphism of finite groups and $y \in H$ with $|y| = n$. Show that there is an $x \in G$ with $|x| = n$.
	- 2. Let p and q be primes, $p \ge q$, $n \ge 1$, and G a group with $|G| = p^{n} q$. Show that G has a normal subgroup H of order p^n . (Hint: do the $p > q$ and $p = q$ cases separately.)
- II. 1. Let R be a commutative ring with distinct prime ideals P and Q with P \cap Q = {0}. Show that R is isomorphic to a subring of the direct product of two fields.
	- Let p and q be positive primes. Show that the polynomial $2.$ $f(X) = X^3 + px^2 + q \in \mathbb{Z}[X]$ is irreducible in $\mathbb{Q}[X]$.
- III.1. Let A and B be finite abelian groups with $|A| = m$ and $|B| = n$. Show that $Hom(z, B) = 0$ if and only if $qcd(m, n) = 1.$
	- 2. Let A be a submodule of a projective R-module B. Show that A is projective if B/A is projective.

IV. 1. Let $K \subseteq F$ and $K \subseteq L$ be subfields of a field M with $[F:K] = p$ and $[L:K] = q$ for distinct primes p and q. Show that $F \cap L = K$, and that $F = K(\alpha)$ and $L = K(\beta)$ for any $\alpha \in F - K$ and $\beta \in L - K$.

 \mathcal{L}^{\pm}

 \sim α

2. Let K be a field and $f(X) \in K[X]$ be irreducible and separable with $deg(f(X)) = n$. Show that if the Galois group G of $f(X)$ over K is abelian, then $|G| = n$.