Analysis Preliminary Exam – August 2024

The exam has 9 problems. In the problems below, m denotes the Lebesgue measure on R, D denotes the unit disk $\{z \in \mathbb{C} : |z| < 1\}$, and $B(a, r)$ denotes the open disk in $\mathbb C$ with center $a \in \mathbb{C}$ and $r > 0$.

1. Let (X, \mathcal{M}, μ) be a measure space such that there exist sets $E_n \in \mathcal{M}$ $(n \geq 1)$ with $\mu(E_n) > 0$ and $\mu(E_n) \to 0$. Show that there exist *disjoint* sets $F_n \in \mathcal{M}$ $(n \geq 1)$ with $\mu(F_n) > 0$ and $\mu(F_n) \to 0$.

2. Determine all holomorphic functions f on $B(0, 2)$ that have a simple zero at $1/2$, a double zero at 0 and $|f(z)| = 1$ on $\partial \mathbb{D}$.

3. Let $f_n : \mathbb{R} \to [0, \infty)$ be Lebesgue measurable functions. Show that for every $t > 0$ we have:

$$
m(\lbrace x \in \mathbb{R} : \liminf_{n \to \infty} f_n(x) > t \rbrace) \le \liminf_{n \to \infty} m(\lbrace x \in \mathbb{R} : f_n(x) > t \rbrace).
$$

4. Evaluate the integral

$$
\int_0^\infty \frac{x^{1/3}}{x^2 + 4} \, dx.
$$

Justify fully your answer.

5. Let μ, ν be two Borel measures on R. For every E Borel subset of R, define $\mu * \nu(E) =$ $\int_{\mathbb{R}} \int_{\mathbb{R}} \chi_E(x+y) d\mu(x) d\nu(y).$

- (1) Show that $\mu * \nu$ is a Borel measure on R.
- (2) If μ is finite and $\nu \ll m$, show that $\mu * \nu \ll m$.
- **6.** Let f be analytic in \mathbb{D} . Show that

$$
\limsup_{|z|\to 1} \left| f(z) - \frac{1}{z} \right| \ge 1.
$$

- 7. Let $f \in L^2([0,\infty),m)$.
	- (1) Show that for every $x > 0$ we have

$$
\left|\frac{1}{\sqrt{x}}\int_0^x f(t)\,dt\right| \leq \|f\|_2.
$$

(2) Show that

$$
\lim_{x \to \infty} \frac{1}{\sqrt{x}} \int_0^x f(t)dt = 0.
$$

Hint: Approximate f in $\| \cdot \|_2$ by simple functions.

8. Let $f_n : [0,1] \to \mathbb{R}$ be Lebesgue measurable functions $(n \geq 1)$ such that f_n converges pointwise to 0 a.e.[m]. Show that there exist $n_1 < n_2 < n_3 < \dots$ natural numbers such that $\Sigma_{k\geq 1}|f_{n_k}|$ converges a.e.[*m*].

Hint: Use Egorov's Theorem.

9. Let z_1, z_2, z_3 be three points in the complex plane forming an equilateral triangle of sidelength 1. Let Ω be the intersection of the discs $B(z_1, 1/\sqrt{2}), B(z_2, 1/\sqrt{2}),$ and $B(z_3, 1/\sqrt{2})$ (shaded region in the figure). Find a conformal map from Ω onto $\mathbb D$. You can leave your answer as the composition of conformal maps.

Hint: All circular arcs intersect orthogonally.

Analysis Preliminary Exam – January 2024

A region is a non-empty, open, and connected subset of C.

- 1. Let (X, \mathcal{M}, μ) be a measure space. Let $f_1 \leq f_2 \leq f_3 \leq \dots$ be an increasing sequence of real-valued measurable functions on X. If f_n converges in measure to some function f, show that f_n converges pointwise almost everywhere to f.
- 2. Let $f(z) = \frac{1}{(1+z^2)(2-z)^2}$. Determine the principal part of f at $z = 2$ and determine the region where the Laurent series of f at $z = 2$ converges.
- 3. Let μ, ν be two measures on a measurable space (X, \mathcal{M}) satisfying the following property: for every $\varepsilon > 0$ there exists a set $E \in \mathcal{M}$ with $\mu(E) < \varepsilon$ and $\nu(E^c) < \varepsilon$. Show that there exists a set $E \in \mathcal{M}$ such that $\mu(E) = \nu(E^c) = 0$.
- 4. Let $S = \{z = x + iy : x, y \ge 0\}$ and let f be analytic in an open set containing S and such that $zf(z) \rightarrow 0$ as $|z| \rightarrow \infty$, $z \in S$. Prove that

$$
\lim_{b \to \infty} \int_0^b f(t)e^{it} dt = i \int_0^\infty f(it)e^{-t} dt.
$$

- 5. Let (X, \mathcal{M}, μ) be a σ -finite measure space. Show that $L^{24}(X, \mu) \subseteq L^{20}(X, \mu)$ if and only $\mu(X) < \infty$.
- 6. Let $G \subseteq \mathbb{C}$ be a region. Determine all analytic $f : G \to G$ that satisfy $f(z) = f(f(z))$ for all $z \in G$.
- 7. Let $f : [0, 1] \to \mathbb{R}$ be continuous. Prove that

$$
\int_0^1 \frac{|f(x)|}{x^{1/3}} dx \le 2^{2/3} \left(\int_0^1 |f(x)|^3 dx \right)^{1/3}
$$

and determine for which functions equality can be attained.

- 8. Suppose that $\{f_n\}$ is a sequence of holomorphic functions in a region $\Omega \subset \mathbb{C}$ satisfying that $|f_n(z)-2024|\geq 1$ for all $z\in\Omega$ and all $n\in\mathbb{N}$. Show that f_n has a subsequence that converges locally uniformly to a holomorphic function f on Ω , or it has a subsequence that converges locally uniformly to infinity.
- 9. For $E \subset \mathbb{R}$ and $n \in \mathbb{N}$, let E_n be the set of all $x \in \mathbb{R}$ for which there exists $y \in E$ satisfying $|x - y| < 1/n$.
	- (a) Prove that if E is compact then $\lim_{n\to\infty} m(E_n) = m(E)$.
	- (b) Give an example of a measurable set E for which $\lim_{n\to\infty} m(E_n) \neq m(E)$.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$

1. Prove or disprove: There is a holomorphic function f on

$$
P = \{ z \in \mathbb{C} : 0 < |z| < 1 \}
$$

such that f' has a simple pole at $z = 0$.

- 2. Let f_n be Lebesgue measurable functions on [0, 1] such that $||f_n||_{2023} \le 2023$ for all $n \ge 1$ and f_n converges to 0 pointwise almost everywhere on [0, 1]. Prove that $\int_0^1 |f_n| dm \to 0$.
- 3. Let $\Omega = \{x + iy : x > 0 \text{ and } y > 0\} \setminus \{re^{i\pi/4} : r \ge 1\}.$ Determine an explicit conformal map from Ω onto $\mathbb D$. You may express your answer as a composition of explicit maps.
- 4. Let $f \in L^1(\mathbb{R})$ and $p > 0$. Prove that

$$
\lim_{n \to \infty} n^{-p} f(nx) = 0
$$

for *m*-a.e. $x \in \mathbb{R}$.

Hint: Show that $\sum_{n\in\mathbb{N}} n^{-p} f(nx)$ converges a.e..

- 5. Consider a rational function $f = p/q$ where q is a polynomial of degree $n \geq 2$ and p is a $\sum_{k=1}^{m} \text{Res}(f, z_k) = 0.$ polynomial of degree $n-2$ or less. Let z_1, \ldots, z_m be the distinct zeros of q. Show that
- 6. Let $p > 1$ and $f : [0, 1] \to \mathbb{R}$ be a function such that

$$
\sum_{i=1}^{n} \frac{|f(b_i) - f(a_i)|^p}{(b_i - a_i)^{p-1}} \le 2023
$$

whenever $(a_1, b_1), \ldots, (a_n, b_n)$ disjoint intervals in [0, 1]. Prove that f is absolutely continuous.

- 7. Let $g : \mathbb{D} \to \{z : |z| \leq 5\}$ be holomorphic with $g(0) = 2i$. Prove that g has no zeros in the set $\{z : |z| \leq 1/5\}.$
- 8. Let $(f_n)_{n\in\mathbb{N}}$ be Lebesgue measurable nonnegative functions on [0, 1]. Show that there exist constants $c_n > 0$ such that $\sum_{n \geq 1} c_n f_n(x)$ converges for almost all $x \in [0, 1]$.
- 9. Let $f_n : \mathbb{D} \to \mathbb{D}$ be analytic functions such that $f_n \to 0$ pointwise on $\{z \in \mathbb{C} : |z| < 1/2\}$. Show that $f_n \to 0$ locally uniformly in $\mathbb D$ (in other words, show that f_n converges to 0 uniformly on each compact subset of \mathbb{D}).

Analysis Prelim, January 2023

The exam has 9 problems. In the problems below m is used to denote Lebesgue measure on R. If $a \in \mathbb{C}$ and $R > 0$, then $B(a, R) = \{z \in \mathbb{C} :$ $|z-a| < R$.

1. For each integer $n \geq 1$ denote by b_n the Lebesgue measure of the unit ball centered at the origin in \mathbb{R}^n .

- (i) Show that $b_{n+1} = b_n \cdot \int_{-1}^{1} (\sqrt{1-t^2})^n dt$ for all $n \ge 1$.
(ii) Show that $b_n \to 0$ as $n \to \infty$.
-

2. Let f be analytic and non-constant in the disk $B(0,2)$. Suppose that for all z with $|z|=1$, we have $|f(z)|=1$. Show that f has at least one zero in $B(0,1).$

3. Let $(f_n) \subseteq L^2[0,1]$ be a sequence of functions such that

$$
\lim_{n,k \to \infty} \int_{[0,1]} |f_n - f_k|^2 \, dm = 0.
$$

Let also $K : [0,1] \times [0,1] \to \mathbb{R}$ be a continuous function. For each $n \in \mathbb{N}$ and $x \in [0,1]$, define

$$
g_n(x) = \int_{[0,1]} K(x,y) f_n(y) dm(y).
$$

Prove that the sequence (g_n) converges uniformly on [0, 1].

4. Let f and q be meromorphic functions in \mathbb{C} . Assume that

 $|f(z) + g(z)| \leq |g(z)|$

for every $z \in \mathbb{C}$ which is not a pole of either f or g. Show that there is a constant c with $|c+1| \leq |c|$ such that $f(z) = cg(z)$.

5. Suppose that $f, g \in L^1(\mathbb{R}, m)$ and let $g_n(x) = g(x - n)$ for all $n \ge 1$ and all $x \in \mathbb{R}$. Show that $\lim_{n \to \infty} ||f + g_n||_1 = ||f||_1 + ||g||_1$.

6. Suppose that the power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ converges in the unit disk $B(0,1)$. Suppose also that f extends to be meromorphic in $B(0,R)$ for some $R > 1$ with finitely many poles, all of which lie on the unit circle and are simple poles. Prove that the sequence (a_n) is bounded.

7. Let (X,μ) be a finite measure space. Let $(f_n)_{n\geq 1}$ be a sequence of integrable functions on X . Suppose that there is an integrable function f on X such that $(f_n(x))$ converges to $f(x)$ pointwise almost everywhere on Х.

Prove that, for every $\varepsilon > 0$, there are $M > 0$ and a measurable subset E of X such that $\mu(E) < \varepsilon$ and $|f_n(x)| < M$ for all $x \in X \setminus E$ and all $n \geq 1$.

8. Let $G \subsetneq \mathbb{C}$ be a simply connected open set with $0 \in G$, and $f : G \to G$ be analytic with $f(0) = 0, f'(0) = 1$. Show that $f(z) = z$.

Does the same conclusion hold for $G = \mathbb{C}$? (Prove your answer.)

- 9. Let μ be a positive measure on the measurable space (X, \mathcal{M}) , and let $f: X \to X$ be a measurable transformation, i.e. $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{M}$. For $E \in \mathcal{M}$ define $\mu_f(E) = \mu(f^{-1}(E))$.
	-
	- (a) Show that μ_f is a measure on (X, \mathcal{M}) .

	(b) Prove that $\int_X h(f(x))d\mu(x) = \int h(y)d\mu_f(y)$ for every $h \in L^1(\mu_f)$.

Analysis Preliminary Exam, August 2022

1. Let f be an entire function and suppose that for each $z_0 \in \mathbb{C}$ there is an integer n such that $a_n = 0$ in the power series expansion $f(z) =$ $\sum_{n=0}^{\infty} a_n(z-z_0)^n$. Show that f must be a polynomial.

2. Let $A \subset [0,1]$ be a Lebesgue measurable set of positive measure. Show that there exist $x \neq y$ in A such that $x - y$ is rational.

3. Let $G = \{z \in \mathbb{C} : |z| < 1 \text{ and } \text{Re}z + \text{Im}z > 1\}$. Determine a conformal mapping f from G onto the open unit disc \mathbb{D} . You may express f as a composition of simpler maps.

4. Let $(r_n)_{n\geq 1}$ be an enumeration of all the rationals in [0, 1]. Show that the function

$$
f(x) = \sum_{n\geq 1} \frac{1}{n^2 \sqrt{|r_n - x|}}
$$

is finite almost everywhere with respect to the Lebesgue measure (for x real).

5. Let $R > 1$ and $f : B(0,R) \to \mathbb{C}$ be analytic. Show $\partial f(B(0,1)) \subseteq$ $f(\partial B(0,1)).$

6. Let (X, \mathcal{M}, μ) be a measure space and let f_n $(n \geq 1)$ and f be measurable, real-valued functions on X . We say that f_n converges almost uniformly to f if for every $\varepsilon_1, \varepsilon_2 > 0$ there is a set E and a positive integer N such that $\mu(E) < \varepsilon_1$ and $|f_n(x) - f(x)| < \varepsilon_2$ for all $n \geq N$ and all $x \in E^c$.

Show that if f_n converges almost uniformly to f then f_n converges pointwise a.e. to f and f_n converges in measure to f .

7. Let $E \subset \{(x, y): 0 \le x \le 1, 0 \le y \le x\}$ be a Lebesgue measurable set such that $m(E_x) \geq x^3$ for all $0 \leq x \leq 1$.

(i). Show that there is $y \in [0,1]$ such that $m(E^y) \geq \frac{1}{4}$.

(ii). Prove a stronger inequality than (i), by finding a constant $c > \frac{1}{4}$ such that for every set E satisfying the hypothesis there is $y \in [0,1]$ with $m(E^y) \geq c.$

8. Show that there is a holomorphic function $f(z)$ on a neighborhood of 0 such that $f(z)^2 = \frac{\sin(z)}{z}$ and determine the radius of convergence of the power series of $f(z)$ at $\tilde{0}$ (with proof).

9. Find all $q \ge 1$ such that $f(x^2) \in L^q((0,1),m)$ for all $f(x) \in L^4((0,1),m)$.

ANALYSIS PRELIMINARY EXAM – JANUARY 2022

Notation: $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and $\mathbb{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}.$

1. Show that for any $\epsilon \in [0,1)$ there is a constant $C < \infty$ depending only on ϵ such that if $f : \mathbb{D} \to \mathbb{C}$ is analytic, then for all $z \in \mathbb{D}$ with $|z| \leq \epsilon$ we have

$$
|f'(z)| \le C \int_{\mathbb{D}} |f(x+iy)| dy dx.
$$

2. Let $G \subset \mathbb{C}$ be an open simply connected domain that is not \mathbb{C} , and let $f : G \to G$ be analytic but not the identity. Show that f has at most one fixed point (that is, there exists at most one $z \in G$ such that $f(z) = z$).

3. Let g be a real-valued measurable function on [0, 1]. Assume that for any $f \in L^1([0,1])$ we have $fg \in L^1([0,1])$. Show that $g \in L^{\infty}([0,1])$.

4. Let $a \in \mathbb{C}$ with $\text{Re } a > 0$. How many solutions does the equation

$$
a - z - e^{-z} = 0
$$

have on the half-plane $\{z : \text{Re } z > 0\}$?

5. Find with proof the limit

$$
\lim_{n \to \infty} \int_0^1 \frac{n x^n}{1+x} \, dx.
$$

6. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Let E be the set of all points $x \in \mathbb{R}$ such that f is continuous at x . Show that E is a Borel set.

7. Prove that there is no one-to-one analytic function mapping the annulus $\{z : 0 < |z| < 1\}$ onto the annulus $\{z : 1/2 < |z| < 2\}.$

8. Let $E \subset \mathbb{R}$ be a nonempty Borel measurable set and let $f \in L^1(E)$. Show that for each 0 ≤ $a \leq \int_E |f| dm$, there exists a nonempty Borel measurable set $E_a \subset E$ such that $\int_{E_a} |f| dm = a$.

9. Does there exist an entire function f such that $f(0) = 0$, $f(i) = i$, and $|f(z)| \le |z|^{2/3}$ for all $z \in \mathbb{C}$? Justify your answer.

ANALYSIS PRELIMINARY EXAM – AUGUST 2021

Notation: $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and $\mathbb{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}.$

1. Construct a 1-to-1 conformal map of the upper half-plane H onto the domain

$$
D = \left\{ z \in \mathbb{C} : |z| > 1 \text{ and } |z - i| < \sqrt{2} \right\}.
$$

A sequence of explicit functions and the order in which they are to be composed to give the final mapping will suffice.

2. Given $a \in \mathbb{R}$, compute (with proof) the integral

$$
\int_{-\infty}^{\infty} \frac{\cos(ax)}{1+x^2} \, dx.
$$

3. Let $K(x, y)$ be Lebesgue measurable on \mathbb{R}^2 such that for some $C > 0$

$$
\int_{-\infty}^{\infty} |K(x, y)| dy \le C, \quad \text{for a.e. } x \in \mathbb{R},
$$

$$
\int_{-\infty}^{\infty} |K(x, y)| dx \le C, \quad \text{for a.e. } y \in \mathbb{R}.
$$

For $1 \leq p < \infty$ and $f \in L^p(\mathbb{R})$, define

$$
Tf(x) = \int_{-\infty}^{\infty} K(x, y) f(y) dy.
$$

Show that $Tf \in L^p(\mathbb{R})$ and that $||Tf||_p \leq C||f||_p$.

4. Let μ be a finite measure on a measurable space (X, \mathcal{M}) and suppose that $\{E_n\}_{n\in\mathbb{N}}$ are measurable sets with $\mu(E_n) \ge \alpha$ for all $n \in \mathbb{N}$. Let $E = \{x \in X : x \in E_n \text{ for infinitely many } n\}$. Show that E is measurable and that $\mu(E) \geq \alpha$.

5. Let

$$
f(z) = \frac{1}{z - 1} - \frac{1}{z + 1} = \frac{2}{z^2 - 1}
$$

defined on the domain $U = \mathbb{C} \setminus [-1,1]$. Show that $\int_{\gamma} f(z) dz = 0$ for any closed rectifiable curve γ in U.

6. Let U be a connected open subset of C and let $(f_n)_{n\in\mathbb{N}}$ be a sequence of holomorphic functions defined on U. Suppose that $f_n \to f$ uniformly on compact subsets of U and that the functions f_n are nonvanishing on U . Show that, either f is nonvanishing, or f is identically zero.

7. Let $f : [0,1] \times \mathbb{D} \to \mathbb{D}$ be a measurable function such that $z \mapsto f(t, z)$ is holomoprhic for all $t \in [0,1]$. Show that the function

$$
F(z) = \int_0^1 f(t, z) dt
$$

is holomorphic in D.

8. Let $f : \mathbb{R} \to \mathbb{R}$ be a nonnegative measurable function such that

$$
\sup_{n\in\mathbb{N}}\int_{-\infty}^{\infty}|x|^nf(x)\,dx<\infty.
$$

Show that $f(x) = 0$ for a.e. $x \in (-\infty, -1) \cup (1, \infty)$.

9. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions in $L^1(\mathbb{R})$ such that for all continuous and compactly supported functions g

$$
\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) g(x) dx = g(0).
$$

Prove that the sequence $(f_n)_{n\in\mathbb{N}}$ is not Cauchy in $L^1(\mathbb{R})$.

PRELIMINARY EXAMINATION IN ANALYSIS–AUGUST 2020

Notation: $\mathbb{D} = \{z \in \mathbb{C}; |z| < 1\}.$

1. Construct a 1-1 conformal map of $\mathbb{D} \cap \{Re(z) > 0\}$ onto \mathbb{D} .

2. If $f \in H(\mathbb{D})$ wiith $f(\mathbb{D}) \subset \mathbb{D}$, how big can $|f'(\frac{1}{2})|$ $\frac{1}{2}$) be? (You should explicitly display and extremizing function.)

3. Compute

$$
\int_{-\infty}^{\infty} \frac{\cos x}{1 + x^2} dx.
$$

4. Find, with proof:

$$
\lim_{n \to \infty} \int_0^\infty \frac{n^2 x}{1 + x^2} e^{-n^2 x^2} dx.
$$

5. let $1 < p, q, r < \infty$ with $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ $\frac{1}{r}$. Show that if $f \in L^p(\mathbb{R})$ and $g \in L^q(\mathbb{R})$, then $fg \in L^r(\mathbb{R})$ and:

$$
||fg||_{L^r} \leq ||f||_{L^p} ||g||_{L^q}.
$$

6. Suppose that $||f_n||_{L^2[0,1]} \le 1$ for $n = 1, 2, ...$ and $f_n \to 0$ a.e. Show that $||f_n||_{L^1[0,1]} \to 0$. (*Hint:* use Egorov's theorem.)

7. Find a closed set $C \subset L^2([0,1])$ with $\inf_{f \in C} ||f||_{L^2[0,1]} = 1$ but $||f||_{L^2[0,1]} > 1$, for any $f \in C$.

8. Show that $\forall \epsilon > 0 \exists \delta > 0$ with the following property:

If $f \in H(\mathbb{D})$ with $f(\mathbb{D}) \subset \mathbb{D}$ and $|f(x)| < \delta$ for $-\frac{1}{2} \leq x \leq \frac{1}{2}$ $\frac{1}{2}$, then $|f(\frac{1}{2})|$ $\frac{1}{2}i)| < \epsilon.$

Hint: use a normal family argument.

9. Let $f \in L^2[-1,1]$. Show that $\forall z \in \mathbb{C}$ the function $t \mapsto f(t)e^{itz}$ is integrable, and that:

$$
F(z) = \int_{-1}^{1} f(t)e^{itz}dt
$$

is an entire function.

Analysis Preliminary Exam - January 2019

- 1. Evaluate the following (with proof): $\int_{0}^{\infty} \frac{\sqrt{x}}{1+x^2} dx.$
- 2. Let $g \in L^2(0,\infty)$, and let $\mathbb{C}_+ = \{z \in \mathbb{C} : \text{Re } z > 0\}.$

(a) Show that for each $z \in \mathbb{C}_+$ the function $\frac{g(t)}{1+zt}$ is in $L^1(0,\infty)$.

- (b) Define $f: \mathbb{C}_+ \to \mathbb{C}$ by $f(z) = \int_0^\infty \frac{g(t)}{1+zt} dt$ and show that f is continuous on \mathbb{C}_+ .
- 3. Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and let $f : \mathbb{D} \to \mathbb{C}$ be analytic. For $0 \le r < 1$ define

$$
A(r) = \max_{|z|=r} \operatorname{Re} f(z).
$$

Show that $A(r)$ is strictly increasing unless f is constant.

- 4. Let (X, \mathcal{M}, μ) be a measure space, with $\mu(X) = \infty$. Show that (X, \mathcal{M}, μ) is σ -finite if and only if there exists a measurable function $f: X \to (0, \infty)$ such that $\int_X f d\mu = 1$.
- 5. Let $\mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$. Suppose that $f : \mathbb{H} \cup \mathbb{R} \to \mathbb{C}$ satisfies the following:
	- (iii) $f(z)$ is real whenever z is real. (i) f is continuous.
	- (ii) f is holomorphic on \mathbb{H} . (iv) $f(\mathbb{H}) \subseteq \mathbb{H}$.

Show that $f(\mathbb{H})$ is a dense subset of \mathbb{H} .

- 6. Let m be Lebesgue measure, and set $\mathcal{X} = \{f : [0,1] \to \mathbb{R}, f \text{ Lebesgue measurable}\}\,$, where functions that are equal m-a.e. are identified. Define the distance d on X by $d(f,g)$ = $\int_0^1 \frac{|f-g|}{|f-g|+1} dm$. It is known that (\mathcal{X}, d) is a metric space. Let $f_n, f \in \mathcal{X}$.
	- (a) Show that if $f_n \to f$ pointwise a.e., then $f_n \to f$ in the topology given by the distance $\mathfrak{d}.$
	- (b) Show that the converse of (a) is false, i.e. convergence in d does not imply pointwise a.e. convergence.
- 7. Let $\mathbb{C}_+ = \{z \in \mathbb{C} : \text{Re } z > 0\}$ and let $w \in \mathbb{C}_+$. If $f : \mathbb{C}_+ \to \mathbb{C}_+$ is analytic, then show

$$
|f'(w)| \leq \frac{\operatorname{Re} f(w)}{\operatorname{Re} w}.
$$

8. Let (X, \mathcal{A}) be a measurable space, and let μ and ρ be positive, finite measures on (X, \mathcal{A}) . Suppose that $\mu \ll \rho$. Prove that $\mu \times \mu \ll \rho \times \rho$ and

$$
\frac{d(\mu \times \mu)}{d(\rho \times \rho)}(x, y) = \frac{d\mu}{d\rho}(x) \cdot \frac{d\mu}{d\rho}(y)
$$

where we follow the convention that functions that are equal a.e. are identified.

9. Let $G = \{z \in \mathbb{C} : |\text{Im } z| < 2\}$ and let $f: G \to \mathbb{C}$ be a bounded analytic function such that $\lim_{x \to +\infty} f(x) = c.$ Show that $\lim_{x \to +\infty} f(z + x) = c$ for all $z \in G$.

Analysis Preliminary Exam - Fall 2018

1. Let G be a non-empty, connected, open subset of C. Fix a point $\alpha \in G$, and let $\{\alpha_n\}$ be a sequence of points in G that converges to α . Let f and g be holomorphic functions on G that do no vanish at any point of G . Show that if

$$
\frac{f'(\alpha_n)}{f(\alpha_n)} = \frac{g'(\alpha_n)}{g(\alpha_n)}
$$

for every n, then q is a multiple of f.

2. Find (with proof) the following limit:

$$
\lim_{n\to\infty}\int_0^\infty\frac{1}{1+x^{\frac{n}{\ln(n+2018)}}}\,dx.
$$

- 3. Let $\Omega = \{z \in \mathbb{C} : |z 1| > \sqrt{2} \text{ and } |z + 1| > \sqrt{2}\}\.$ Explicitly give a conformal mapping ϕ of Ω onto the punctured unit disc $\{z \in \mathbb{C} : 0 < |z| < 1\}$. (A sequence of explicit functions whose composition gives ϕ will suffice.)
- 4. Let $(\mathbb{R}, \mathcal{M}, m)$ be the Lebesgue measure space. If $f \in L^1(m)$ and $g \in L^p(m)$, for some $p \in [1, \infty)$, prove that

$$
||f * g||_{L^p} \leq ||f||_{L^1}||g||_{L^p}.
$$

(Recall
$$
f * g(x) = \int f(x - y)g(y) dy
$$
.)

5. Let M_n be a sequence of positive numbers and let

$$
\mathcal{F} = \{f : f \text{ is holomorphic on } \mathbb{D} \text{ and } |f^{(n)}(0)| \leq M_n \text{ for } n = 0, 1, 2, \cdots \}.
$$

Show that F is a normal family if and only if $\sum_{n=0}^{\infty} \frac{M_n z^n}{n!}$ converges for all $z \in \mathbb{D}$.

6. Let f be a nonnegative Lebesgue measurable function on $[0,\infty)$ such that $\int_0^\infty f(x) dx < \infty$. Show there exists a positive, increasing, measurable function ϕ on $[0, \infty)$ with $\lim_{x \to \infty} \phi(x) = \infty$ such that

$$
\int_0^\infty \phi(x) f(x) \, dx < \infty.
$$

7. Let f be holomorphic in an open set containing the closed unit disc $\{z : |z| \leq 1\}$, with $f(i/5) = 0$ and

$$
|f(z)| \le |e^z| \text{ for all } z \text{ with } |z| = 1.
$$

How large can $|f(-i/5)|$ be? Find (with proof) the best possible upper bound.

- 8. Suppose (X, Σ, μ) is a finite measure space and $\{f_n\}$ and f are (X, Σ, μ) measurable functions such that $f_n \to f$ in measure and $|f_n(x)|, |f(x)| < \infty$ a.e. Prove that $f_n^2 \to f^2$ in measure.
- 9. Find (with proof) all functions on the Riemann sphere $\mathbb{C}\cup\{\infty\}$ that have a simple pole at i and at ∞ , but are holomorphic elsewhere.

1. Let (X, Σ, μ) be a measure space, and let f_n, f be measurable functions with $f_n \to f$ a.e., and such that there is an $F \in L^1(\mu)$ such that for each n $|f_n| \leq F$ on X. Show that $f_n \to f$ in measure.

Recall that f_n is said to converge to f in measure, if for each $\varepsilon > 0$ there is N such that $\mu({x : |f_n(x) - f(x)| > \varepsilon}) < \varepsilon$ for all $n \geq N$.

2. Let $log z$ be the principal branch of the logarithm. The function

$$
f(z) = \frac{z}{(2 + \log z)^2}
$$

has one pole at a point $p \in \mathbb{C}$. Determine p, the singular part S of f at p, and the radius of convergence of the power series of $g = f - S$ at p. (You do not have to determine the power series of g .)

3. Find with proof

$$
\lim_{n\to\infty}\int_0^\infty\frac{n^2\sin\frac{x}{n}}{n^3x+x(1+x^3)}dx.
$$

4. For $\varepsilon > 0$, let $S_{\varepsilon} = \{x \in \mathbb{R} : |x - 1| > \varepsilon\}$. Use the residue theorem to determine

$$
\lim_{x\to 0^+}\int_{S_{\epsilon}}\frac{x}{(x^2+4)(x-1)}dx
$$

Make sure to justify your work.

5. Let (X, Σ, μ) be a finite measure space, and let f_n , f be measurable functions such that $f_n \to f$ a.e.

Suppose that the sequence $\{f_n\}$ has the following property: For each $\varepsilon > 0$ there is a $\delta > 0$ such that whenever E is a measurable set with $\mu(E) < \delta$, then $\int_E |f_n| d\mu < \varepsilon$ for all *n*.

Show that $f \in L^1(\mu)$ and $f_n \to f$ in $L^1(\mu)$.

6. Suppose $f: \mathbb{C} \longrightarrow \mathbb{C}$ is analytic for all z except for poles at $z =$ a_1, a_2, \cdots, a_k . Assume that f has the Laurent expansion $f(z) = \sum_{j=-\infty}^{n} b_j z^j$ valid for $|z| > \max_i \{|a_i|\}$. Here $n < \infty$. Show that f is a rational function.

7. Let m be Lebesgue measure on [0, 1] and let $E \subseteq [0,1] \times [0,1]$ be an $m \times m$ - measurable set. Suppose

$$
m({x : m(E_x) \ge 1/3}) \ge 1/2.
$$

Show that $(m \times m)(E) \ge 1/6$ and give an example of a set E, where equality is attained. Here $E_x = \{y \in [0,1] : (x, y) \in E\}.$

8. Suppose f is an analytic function mapping the unit disc to itself with $f(0) = 0$. Suppose also that f has "radial limit" $f^*(1)$ at $z = 1$, meaning $f^{*}(1) = \lim_{x\to 1} f(x)$. We define the "angular derivative" of f at $z = 1$ as
 $f'(1) = \lim_{x\to 1} \frac{f^{*}(1) - f(x)}{1 - x}$, if this limit exists. It is understood that in

both of these limit existences $x \in \mathbb{R}$, $0 \le x < 1$.

Prove that if $|f^*(1)| = 1$ and if the angular derivative $f'(1)$ exists, then $|f'(1)| \geq 1.$

9. Let $f \in L^1([0,1], dx)$ and g be a bounded Lebesgue measurable periodic function on $\mathbb R$ with period 1, i.e. $g(x) = g(x+1)$ for all $x \in \mathbb R$. Show that

$$
\lim_{n\to\infty}\int_0^1f(x)g(nx)dx=\int_0^1f(x)dx\cdot\int_0^1g(x)dx.
$$

Hint: Try a continuous function f first.

Analysis Prelim August 2016

For $a \in \mathbb{C}$ and $r > 0$ let $B(a, r) = \{z \in \mathbb{C} : |z - a| < r\}$, $\mathbb{D} = \{z \in \mathbb{C} :$ $|z| < 1$, $\mathbb{N} = \{1, 2, ...\}$.

1. Suppose that (X, \mathcal{A}, μ) is a σ -finite measure space, $1 \leq p < \infty$ and $f_n \to f$ in L^p . Suppose that $\{g_n\}_{n=1}^{\infty}$ is a sequence of μ -measurable functions that converges point-wise a.e. in X to $g: X \to \mathbb{R}$, with the further property that $|g_n| \leq M < \infty$, for some M and all $n \in \mathbb{N}$.

Prove that $g_n \cdot f_n \to g \cdot f$ in L^p .

2. Prove that $\frac{1}{2\pi} \int_0^{2\pi} e^{\cos t} dt = \sum_{n=0}^{\infty} \frac{1}{(2^n n!)^2}$.

3. Let (X, \mathcal{A}, μ) be a measure space. Suppose that $f : X \to \mathbb{R}$ is nonnegative and μ -integrable. Define for every $A \in \mathcal{A}$, $\nu(A) := \int_A f d\mu$.

- (i) Prove that ν is a measure on \mathcal{A} .
- (ii) Prove that if $q: X \to \mathbb{R}$ is ν -measurable and ν -integrable, then $f \cdot q$ is a μ -measurable, μ -integrable function and

$$
\int g\,d\nu=\int f\cdot g\,d\mu.
$$

4. Let $w \in \mathbb{D}$ and $f : \mathbb{D} \to \mathbb{D}$ be analytic and such that $f(0) = f(w) = 0$.

(a) Prove that $|f'(0)| \leq |w|$.

(b) Determine all such f with $|f'(0)| = |w|$.

5. Let $f : [0,1] \to \mathbb{R}$ be absolutely continuous and assume that $f' \in$ $L^2([0,1])$ and $f(0) = 0$. Show that the following limit exists and compute it:

$$
\lim_{x\to 0+} x^{-1/2} f(x).
$$

6. Let $f_n : \mathbb{D} \to \mathbb{D}$ be a sequence of holomorphic functions such that $f_n(z) \to 1$ for one $z \in \mathbb{D}$. Prove that $f_n \to 1$ uniformly on each compact subset of D.

7. Let $M > 0$, let (X, \mathcal{M}, μ) be a measure space, and let $f_n \in L^2(\mu)$ with $\int_X |f_n|^2 d\mu \leq M$ for all $n \in \mathbb{N}$.

Show: If $\{a_n\} \in l_2$, then $a_n f_n(x) \to 0$ a.e. $[\mu]$.

8. Let $r > 0$ and $f : B(0,r) \setminus \{0\} \to \mathbb{C}$ be analytic with Re $f(z) > 0$ for all $z \in B(0,r) \setminus \{0\}.$

Show that f has a removable singularity at 0.

9. If $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable, prove that

$$
\lim_{n\to\infty}\int_{-\infty}^{\infty}f(x)\cos(nx)\,dx=0.
$$

Analysis Prelim January 2016

For $a \in \mathbb{C}$ and $r > 0$ let $B(a, r) = \{z \in \mathbb{C} : |z - a| < r\}$. For a region $G \subseteq \mathbb{C}$ Hol(G) denotes the analytic functions on G.

1. Use the Residue theorem to calculate $\int_{-\infty}^{\infty} \frac{\cos 2t}{t^2 - 2t + 2} dt$.

2. With proof determine the limit as $n \to \infty$ of

$$
\int_0^\infty \frac{\cos\frac{x^2}{n}}{(1+x^n)\sqrt{x}}dx.
$$

3. Does there exist an analytic function mapping the unit disc onto the whole complex plane? If no, explain why not; if yes, describe an example.

4. Show that

$$
f \to \int_0^1 \int_0^x f(y)(x+y)^{-5/4} dy dx
$$

defines a continuous linear functional on $L^2[0,1]$.

5. Let f be analytic on $B(0,1)$ with Re $f(z) > 0$ for all $z \in B(0,1)$. Show that $|f'(0)| \leq 2 \text{ Re } f(0)$.

6. Let (X, \mathcal{M}, μ) be a finite measure space. Show: If $f_n, f, g \in L^1(\mu)$ such that (a) $|f_n(x)| \le g(x)$ for all $x \in X$ and all $n \in \mathbb{N}$, and (b) $f_n \to f$ in measure, then $f_n \to f$ in $L^1(\mu)$.

7. Let $\Omega = B(0,1) \setminus \{0\}$, and suppose that $f, g \in Hol(\Omega)$ with $f = e^g$. Show that if f does not have an essential singularity at 0 , then f must have a removable singularity at 0 and $\lim_{z\to 0} f(z) \neq 0$.

8. Let (X, \mathcal{M}, μ) be a finite measure space.

(a) For $a \in \mathbb{C}$ and $r \in \mathbb{R}$ define the half space

$$
H(a,r)=\{z\in\mathbb{C}:\ \operatorname{Re}\,az\leq r\}.
$$

Show: If $f: X \to H(a,r)$ is measurable, then $\frac{1}{\mu(A)} \int_A f d\mu \in H(a,r)$ for all $A \in \mathcal{M}$ with $\mu(A) \neq 0$.

(b) Show: If $f: X \to \mathbb{C}$ is measurable such that $\frac{1}{\mu(A)}\left| \int_A f d\mu \right| \leq 1$ for all $A \in \mathcal{M}$ with $\mu(A) \neq 0$, then $|f(x)| \leq 1$ a.e.

9. Let $G = \{z \in \mathbb{C} : -1 < \text{Im } z < 1\}$ and let $f \in Hol(G)$ be such that (a) $|f(z)| \leq \frac{1}{1-|\operatorname{Im} z|}$ for all $z \in G$, and

(b) $lim_{x\to\infty}f(x)=0.$

Set $f_n(z) = f(z+n)$ and show that $f_n \to 0$ locally uniformly on G.

Real and Complex Preliminary Exam August 2015

1. A complex-valued function f on the plane is said to be locally M -Lipschitz for $M > 0$ if for each $z \in \mathbb{C}$ there exists an $\epsilon > 0$ so that $|f(w) - f(z)| < M|w - z|$ whenever $|w-z| < \epsilon$. Given $M > 0$, state and prove a description of all entire functions f which are locally M -Lipschitz on \mathbb{C} .

2. With proof find the limit as $n \to \infty$ of

 $\label{eq:2.1} \mathcal{L}^{\text{max}}_{\text{max}} = \mathcal{L}^{\text{max}}_{\text{max}}$

 \sim

$$
\int_0^n \frac{x \sin(\frac{1}{nx})}{\sqrt{x^2+1}} dx.
$$

3. Let $\Omega = \{z \in \mathbb{C} : z \neq it \text{ for any } t \geq 0\}$, and define g by

$$
g(z)=\frac{z}{(z+1)^2}\,,\quad z\in\Omega\setminus\{-1\}.
$$

(a) Show that there is an analytic branch of $\sqrt{g(z)}$ in $\Omega \setminus \{-1\}$.

(b) Fix a branch f of $\sqrt{g(z)}$ with $f(1) = 1/2$. Determine the nature of the singularity of f at $z = -1$ and calculate the residue of f at -1.

4. Suppose that F is a nonnegative function that is integrable on $\mathbb R$ (with respect to Lebesgue measure dm) and that there is a constant C such that

$$
\int_{\mathbb{R}} F f \, dm \leq C \int_{\mathbb{R}} f \, dm
$$

whenever f is a nonnegative continuous function on $\mathbb R$ having compact support. Prove that $F(x) \leq C$ for almost all x.

5. Let Ω be the open unit disc $\mathbb D$ with the real segment $[\frac{1}{2}, 1)$ removed. Construct an explicit conformal mapping f from Ω onto $\mathbb D$ with $f(0) = 0$.

6. Let (X, \mathcal{M}, μ) be a measure space and let $f_n, g_n, f, g: X \to \mathbb{C}$ be measurable functions satisfying:

- (a) $g_n, g \in L^1$, $g_n \to g$ in $L^1(\mu)$, and $g_n(x) \to g(x)$ a.e.
- (b) $|f_n(x)| \leq |g_n(x)|$ for all $x \in X$ and all $n \in \mathbb{N}$,
- (c) $f_n(x) \rightarrow f(x)$ a.e. [µ].

Show that $f_n \to f$ in $L^1(\mu)$.

7. Let Ω be a connected open subset of the plane. Suppose $f : \Omega \to \mathbb{C}$ is a continuous complex function having line integrals in Ω which are independent of path. Prove that there exists a function F analytic on Ω such that $F' = f$.

8. Let (X, \mathcal{M}, μ) be a σ -finite measure space and let $f : X \to \mathbb{C}$ be measurable. Let m denote Lebesgue measure on $\mathbb R$. Show that $\int_X |f|^p d\mu = p \int_{(0,\infty)} t^{p-1} \mu({f|f| > t}) d\mu(t)$ for all $p > 0$.

9. Let f be an analytic function mapping the unit disc $\mathbb D$ to itself with $f(0) = 0$ and $|f'(0)| < 1$. Let $f^{(n)} = f \circ f \circ ... \circ f$ be the function obtained by composing f with itself *n*-times. Prove that $f^{(n)} \to 0$ uniformly on compact subsets of **D**.

Analysis Preliminary Exam Spring 2015

Instructions: All problems have equal weight. Throughout the exam, m denotes Lebesgue measure on R, and H denotes the upper halfplane $\{x+iy\in\mathbb{C} : y>0\}.$

1. For $x \in (0, \infty)$ and $n \in \{1, 2, 3, \dots\}$, let

$$
f_n(x) = \frac{e^{\sin(x^2/n)}}{1+x}.
$$

Evaluate, with proof:

- (A) $\lim_{n\to\infty} \int_0^n f_n^2 dm$
- $\lim_{n\to\infty}\int_0^n f_n dm.$ (B)
- 2. Suppose $p \in (1,\infty)$, $f \in L^p((0,\infty), dm)$, and $0 < s < 1/p$. Prove that

$$
\lim_{N\to\infty}\frac{1}{N}\int_0^N x^s f(x)\,dm(x)=0.
$$

3. Let $f : [0,1] \rightarrow \mathbb{R}$ be Lebesgue measurable. Let $||f||_{\infty} = \operatorname{ess} \operatorname{sup}_{t \in [0,1]} |f(t)|$. Assume that

$$
0<\|f\|_{\infty}<\infty.
$$

Prove that

$$
\lim_{n \to \infty} \frac{\int_{[0,1]} |f|^{n+1} dm}{\int_{[0,1]} |f|^n dm} = ||f||_{\infty}.
$$

You may assume the fact that $\lim_{p\to\infty} ||f||_p = ||f||_{\infty}$.

4. Let M denote the Lebesgue measurable subsets of [0, 1]. Suppose μ is a (positive) measure on $([0,1], \mathcal{M})$ and $\mu({0}) = 0$. Define

$$
f(x) = \mu([0, x]),
$$

for $0 \le x \le 1$. Suppose that f is absolutely continuous on [0, 1].

- (A) Prove that $\mu << m$.
- (B) Prove that $\int_E f' dm = \mu(E)$ for all $E \in \mathcal{M}$.

5. Let m_2 denote Lebesgue measure on \mathbb{R}^2 . Let $E \subseteq [0,1] \times [0,1]$ be m_2 -measurable, and suppose that

$$
m(\{y \in [0,1] : (x,y) \in E\}) = 1 \text{ for } m - a.e. x \in [0,1].
$$

Prove that

$$
m(\{x \in [0,1] : (x,y) \in E\}) = 1 \text{ for } m - a.e. y \in [0,1].
$$

- 6. Let $\Omega = \{z : |z| < 1 \text{ and } |\text{Im}(z)| > \text{Re}(z)\}\$. Give an explicit example of an unbounded harmonic function ϕ on Ω that extends continuously to $\partial\Omega \setminus \{0\}$ and vanishes there. (A sequence of explicit functions whose composition gives ϕ will suffice.)
- 7. Determine the following integral and justify your answer: $\int_0^\infty \frac{1+x^2}{1+x^4} dx$.
- 8. Let f be an entire function whose range omits the negative real axis. Prove that f is constant.
- 9. Let G be a simply connected domain that is a proper subset of \mathbb{C} , let $z_0 \in G$, and let

 $\mathcal{F} = \{f : \mathbb{H} \to G, f \text{ is holomorphic, and } f(i) = z_0\}.$

Prove that F is normal.

Instructions: All problems have equal weight. Throughout the exam, dm denotes Lebesgue measure on R.

1. Find the exact value (with proof) of

$$
\lim_{n\to\infty}\int_0^\infty\frac{x^n}{x^{n+3}+1}\,dm(x).
$$

2. Let (X, \mathcal{A}, μ) be a measure space. Let p, q , and r be positive numbers such that $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. Let $f \in L^p(\mu), g \in L^q(\mu)$, and let $h = fg$. Prove that $h \in L^r(\mu)$ and

$$
||h||_r \leq ||f||_p \cdot ||g||_q.
$$

3. Suppose $f : [0,1] \to \mathbb{R}$ is increasing. Suppose

$$
\int_{[0,1]} f' dm = f(1) - f(0).
$$

Prove that $f \in AC([0,1])$; that is, f is absolutely continuous on [0, 1].

4. For $(x, y) \in [0, 1] \times [0, 1]$, let

$$
f(x,y)=\sum_{n=1}^{\infty}\sqrt{n}[(\sin(xy)]^{n}.
$$

(A) Show that the series defining $f(x, y)$ converges for every $(x, y) \in [0, 1] \times [0, 1]$. You may assume basic calculus facts about series.

- (B) Determine whether f is Lebesgue integrable on $[0, 1] \times [0, 1]$.
- 5. Evaluate, with proof,

$$
\int_0^\infty \frac{\arctan(\pi x) - \arctan x}{x} \, dm(x).
$$

Hint: Recall that $\frac{d}{dt} \arctan t = \frac{1}{1+t^2}$.

- 6. Let $\Omega = \{z : |z| < 1 \text{ and } \text{Re}(z) > 1/2\}$. Explicitly give a conformal mapping ϕ of Ω onto the unit disc \mathbb{D} . (A sequence of explicit analytic functions whose composition gives ϕ will suffice.)
- 7. Let f and g be analytic in C except for isolated singularities with $|f(z)| \leq |g(z)|$ wherever both are defined. Show that $f = cg$ where c is a constant.
- 8. Let G be a region in \mathbb{C} , and suppose that for each $n \in \mathbb{N}$, f_n is analytic on G and never vanishes. Prove that if f_n converges to f uniformly on compact sets, then either $f \equiv 0$ or f never vanishes.
- 9. Let f be analytic in an open set which contains the closed unit disc $\overline{\mathbb{D}}$, and assume $M := \max\{ \text{Re } f(z) : |z| = 1 \} \geq 0$. Prove that for $z \in \mathbb{D}$,

$$
|f(z)| \leq \frac{1+|z|}{1-|z|} [M+|f(0)|].
$$

Analysis Prelim, January 2014

1. Use the residue theorem to calculate $\int_{-\infty}^{\infty} \frac{\cos 2x}{x^2+1} dx$

2. Let (X, \mathcal{M}, μ) be a measure space. Let $E_n \in \mathcal{M}$ $(n \geq 1)$ be measurable sets with $\mu(\cup_{n>1} E_n) < \infty$ and $\lim_{n\to\infty} \mu(E_n) = c \in [0,\infty)$. Show that the set A of points that belong to infinitely many E_n is measurable and $\mu(A) \geq c$.

3. Let
$$
\Omega = \{z \in \mathbb{C} : \text{Re} z > 0 \text{ and } \text{Im} z > 0\}
$$
 and let

$$
\mathcal{F} = \{f : \mathbb{D} \to \Omega : f \text{ analytic}, f(0) = e^{i\frac{\pi}{4}}\}.
$$

Determine

$$
\sup\{|f'(0)|: f \in \mathcal{F}\}\
$$

and then determine all functions in $\mathcal F$ for which the sup is attained.

4. Let $f, g : [0, \infty) \to \mathbb{R}$ be continuous functions with $g \in L^1([0, \infty))$ and such that there exists $c > 0$ with $\left| \int_0^x f(t) dt \right| \leq c$ for all $x \geq 0$. Show that the following limit exists:

$$
\lim_{M\to\infty}\int_0^M f(t)\left(\int_t^\infty g(x)dx\right)dt
$$

5. (a). Determine the Laurent series of the function

$$
f(z) = \frac{1}{(z-1)^2(z+1)^2}
$$

which is valid in the annulus $1 < |z| < 2$.

(b). Compute $\int_{\gamma} f(z) dz$, where γ is the circle of center 1 and radius 1, with counterclockwise orientation.

6. Let (X, μ) be a complete measure space and let $f \in L^2(X, \mu)$. Show that the set

$$
\{p \in [1,\infty) : f \in L^p(X,\mu)\}\
$$

is an interval (possibly degenerate).

7. Let $f: \mathbb{C} \to \mathbb{C}$ be a holomorphic function. Assume that the function

$$
g(x,y) = |f(x+iy)|
$$

is integrable on \mathbb{R}^2 . Show that f is identically 0.

8. Let h be a bounded Lebesgue measurable function on $\mathbb R$ such that $\lim_{n\to\infty} \int_E h(nx)dx = 0$, for every Lebesgue measurable set E of finite measure. Show that for every function f Lebesgue integrable on ${\mathbb R}$ we have:

$$
\lim_{n\to\infty}\int_{\mathbb{R}}f(x)h(nx)dx=0.
$$

9. Determine the number of zeroes of the polynomial $2z^5 - 6z^2 + z + 1$
in the annulus $1 < |z| < 2$.

 $\bar{\mathcal{A}}$

 $\ddot{}$

 $\bf 2$

 $\ddot{}$

University of Tennessee

Analysis Preliminary Examination August 2013

1. Find all constants $K > 0$ for which the following holds:

If (X, \mathcal{M}, μ) is any positive measure space and if $f: X \to \mathbb{R}$ is any integrable function satisfying $\left|\int_{E} f d\mu\right| < K$ for all $E \in \mathcal{M}$, then $||f||_1 < 1$.

2. Determine if there exists a closed curve γ in $\mathbb{C}\setminus\{0,1\}$ such that

ï

$$
\int_{\gamma} \frac{5z-3}{z^2-z} dz = 2\pi i
$$

Prove your answer.

3. Find, with proof, the limit

$$
\lim_{n\to\infty}\int_0^\infty \frac{\sin(x^n)}{x^n}dx
$$

4. Let D denote the open unit disk and let $\Omega = \{x + iy : x, y > 0\} \cap \mathbb{D}$. Determine a conformal map of Ω onto D. You may give your answer as the composition of some functions.

5. Let m denote the Lebesgue measure and let $f_n \in L^2([0,1],m)$ be a sequence of functions, such that f_n converges pointwise to $f \in L^2([0,1],m)$. Assume there is $M > 0$ such that $||f_n||_2 \leq M$ for all n. Prove that for all $g \in L^2([0,1])$ we have

$$
\lim_{n\to\infty}\int_{[0,1]}f_n g dm=\int_{[0,1]}fg dm
$$

6. Let D denote the open unit disk, and let $f : \mathbb{D} \to \mathbb{D}$ be a holomorphic function. If $f(\frac{1}{2}) = 0$, find the maximum possible value of $|f(0)|$, and the functions f that attain this value. Justify your answer.

7. Find all entire functions f such that $|f(z)| \ge |z^2 - z|$ for all $z \in \mathbb{C}$. Justify your answer.

8. Let μ and ν be finite positive measures on the measurable space (X, \mathcal{M}) . Show that there exist nonnegative, measurable functions $f, g: X \to \mathbb{R}$ with $f + g = 1$, such that for all E in M

$$
\int_E f d\mu = \int_E g d\nu
$$

9. Let $(f_n)_{n\geq 1}$ be a sequence of functions which are analytic on the domain $G \subset \mathbb{C}$. Assume that (f_n) converges uniformly on G to a function f which is not identically zero on G. Show that $a \in G$ is a zero of f if and only if it is a limit point of zeroes of the f_n , $n = 1, 2, 3, ...$

Analysis Prelim, January 2013

1. Let (X, \mathcal{M}, μ) be a measure space, with $\mu(X) = \infty$. Show that (X, \mathcal{M}, μ) is σ -finite if and only if there exists a measurable function f: $X \to (0,\infty)$ such that $\int_X f d\mu = 1$.

2. Determine the radius of convergence of the power series of $\frac{2}{e^z + e^{-z}}$. Justify your answer.

3. With proof determine

$$
\lim_{n\to\infty}\int_0^n\left(1-\frac{x}{n}\right)^ndx
$$

4. Explicitly determine a 1-1 analytic function from

$$
G = \{ z \in \mathbb{C} : |z| < 1 \text{ and } |z - 1/2| > 1/2 \}
$$

onto the open unit disc. It will be sufficient to explicitly give a sequence of maps whose composition gives the desired map.

5. Let (X, \mathcal{M}, μ) be a measure space and let $f \in L^1(\mu)$. Show that for every $\varepsilon > 0$ there is a $\delta > 0$ such that whenever $E \in \mathcal{M}$ with $\mu(E) < \delta$ then $\int_E |f| d\mu < \varepsilon.$

6. Use the Residue Theorem to calculate

$$
\int_0^{2\pi} \cos^{2n}(\theta) \frac{d\theta}{2\pi}
$$

Justify your work.

7. Let f_n , f be positive, integrable functions on the measure space (X, \mathcal{M}, μ) . Assume that $f_n \to f$ pointwise and $\int_X f_n d\mu \to \int_X f d\mu < \infty$. Show that $\int_E f_n d\mu \to \int_E f d\mu$ for all $E \in \mathcal{M}$.

8. Let D denote the open unit disc, and let f be an analytic function that takes $\mathbb D$ into $\mathbb D$. Show that for all $z, w \in \mathbb D$ $z \neq w$ we have

$$
\left|\frac{f(z)-f(w)}{1-\overline{f(w)}f(z)}\right|\leq \left|\frac{z-w}{1-\overline{w}z}\right|.
$$

9. Let μ, ν be finite measures on the measurable space (X, \mathcal{M}) , with $\nu << \mu$. Let $\lambda = \mu + \nu$ and let $f = \frac{d\nu}{d\lambda}$. Show that $0 \le f < 1$ (μ a.e.) and $\frac{d\nu}{d\mu} = \frac{f}{1-f}$. 1. Let $f(z) = \frac{\cos 2z}{\log(1+3z)}$.

(a) Determine the nature of the singularity that f has at 0 and find its singular part at 0.

(b) Consider the Laurent series of f at 0. Determine the largest set where this series converges.

2. Let (X, \mathcal{M}, μ) be a measure space and let $A_n \in \mathcal{M}$ $(n \geq 1)$ be a sequence of measurable sets. Let $A = \{x \in X \text{ such that } x \text{ belongs to infinitely many } A_n\}.$

(a) Write a formula for A in terms of the sets A_n .

(b) Show that if $\sum_{n>1} \mu(A_n) < \infty$, then $\mu(A) = 0$.

3. Calculate $\int_0^{2\pi} \frac{d\theta}{k + \cos(\theta)}$ for all reals $k > 1$.

4. Let (X, Σ, μ) be a finite measure space, and let $f_n, f \in L^1(\mu)$ such that $f_n(x) \to f(x)$ a.e. [µ]. Suppose that the sequence $\{f_n\}$ also satisfies the following condition:

For every $\varepsilon > 0$ there is a $\delta > 0$ such that whenever $E \in \Sigma$ with $\mu(E) < \delta$, then $\int_E |f_n| d\mu < \varepsilon$ for all *n*.

Show that $\int_X |f_n - f| d\mu \to 0$ as $n \to \infty$.

5. Let $\Omega = \{z \in \mathbb{C} : 0 < \text{Re } z < 1\}$. Sketch Ω and explicitly give a conformal mapping f of Ω onto the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. (A sequence of explicit analytic functions whose composition gives f will suffice.)

6. Let $f : \mathbb{R} \to \mathbb{R}$ be continuously differentiable such that $f, f' \in L^1(\mathbb{R})$ (Lebesgue measure). Show that $f(x) \to 0$ as $x \to \infty$.

7. Let $\mathbb D$ denote the open unit disc, $\mathbb D = \{z \in \mathbb C : |z| < 1\}$ and let

 $\mathcal{F} = \{f : \mathbb{D} \to \mathbb{D} : f \text{ is analytic and } f(0) = 0\}.$

Show that there is an $f_0 \in \mathcal{F}$ such that

$$
\int_{-1/2}^{1/2} f_0(x) dx = \sup \{ \left| \int_{-1/2}^{1/2} f(x) dx \right| : f \in \mathcal{F} \}.
$$

8. Let (X, S) and (Y, T) be measurable spaces, let μ be a σ -finite measure on (X, S) , and let λ, ν be σ -finite measures on (Y, \mathcal{T}) .

Show:

(a) If $\lambda \ll \nu$, then $\lambda \times \mu \ll \nu \times \mu$. (b) If $\lambda \perp \nu$, then $\lambda \times \mu \perp \nu \times \mu$.

9. Let f be an entire function such that $\overline{B(0,1)}$ is contained in $f(\mathbb{C})$. Let V be a component of $f^{-1}(B(0,1))$. Show that V is simply connected.

Analysis Preliminary Examination, January 2012

1. Explicitly determine a 1-1 analytic function from $U = \mathbb{D} \setminus [0,1)$ onto the unit disc D.

2. With proof determine

$$
\lim_{n\to\infty}\int_0^\infty\int_0^1\frac{y}{\sqrt{x}+ny^3}dxdy.
$$

3. Let $\Omega \subseteq \mathbb{C}$ be a region and $f_n : \Omega \to \mathbb{C}$ be analytic functions that are 1-1 and that converge locally uniformly to a non-constant function f on Ω . Show that f is 1-1.

4. Let μ be a positive finite regular measure on the Borel sets of \mathbb{R}^k . Show that for any $g \in L^{\infty}(\mu)$ there is a sequence of compactly supported continuous functions g_n on \mathbb{R}^k such that for all $f \in L^1(\mu)$ we have

$$
\int_{\mathbb{R}^k} g_n f d\mu \to \int_{\mathbb{R}^k} g f d\mu \text{ as } n \to \infty.
$$

5. Let $f \in L^1([0,\infty))$ (Lebesgue measure). Show that

$$
\int_0^\infty e^{-zt} f(t) dt
$$

defines an analytic function in $\{z \in \mathbb{C} : \text{Re } z > 0\}.$

6. Let $M > 0$ and let $g : [0,1] \to [0,\infty]$ be Borel measurable such that

$$
\int_x^y g(t)dt \le M(y-x) \text{ for all } x, y \in [0,1], x < y.
$$

Show that $g(x) \leq M$ a.e. $[m]$.

7. Show that for every $\varepsilon > 0$, there is a $\delta > 0$ with the following property: whenever $f : \mathbb{D} \to \mathbb{C}$ is analytic such that $|f(z)| \leq 1$ for all $z \in \mathbb{D}$ and $|f(x)| \leq \delta$ for all $-1/2 \leq x \leq 1/2$, then $|f(1/2i)| \leq \varepsilon$.

8. Let (X, \mathcal{S}, μ) be a finite measure space. Recall that a sequence of measurable functions $f_n:X\to\mathbb{C}$ is said to converge to 0 in measure, if for every $\varepsilon>0$ there is an integer N such that

 $\mu({x \in X : |f_n(x)| > \varepsilon}) < \varepsilon$ for all $n \ge N$.

Let $f_n, g \in L^1(\mu)$ such that

 $\ddot{}$

(1) $f_n \to 0$ in measure and

(2) $|f_n(x)| \le |g(x)|$ for all $n \in \mathbb{N}$ and $x \in X$.

Show that $\int_X |f_n| d\mu \to 0$.

 $\ddot{}$

Analysis Preliminary Exam August 2011

In the following, C is the complex plane, $\mathbb R$ the real line, and $\mathbb N$ the natural numbers.

(1) Show that the containments $L^1(\mathbb{R}) \subset L^2(\mathbb{R})$ and $L^2(\mathbb{R}) \subset L^1(\mathbb{R})$ both fail but that $L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R}) \subset L^2(\mathbb{R})$ is true. (The measure involved here is Lebesgue measure on \mathbb{R}).

(2) Sketch the region $\Omega = \{z : |z| > 1 \text{ and } 0 < \text{Arg}(z) < \frac{\pi}{3}\}\$ and give a conformal map f carrying Ω one-to-one onto the unit disc $\mathbb{D} = \{z : |z| < 1\}$. (Note: a sequence of explicit analytic functions whose composition gives f will suffice.)

(3) Let (X, \mathcal{M}, μ) be a positive measure space. Prove that the following statements are equivalent:

(A) There exists a μ -integrable real function f on X such that f is strictly positive at each point (that is, such that $f(x) > 0$ for each $x \in X$).

(B) μ is σ -finite (that is, there exists μ -measurable sets $\{X_n\}_{n=1}^{\infty}$ such that $X =$ $\bigcup_{n=1}^{\infty} X_n$ and $\mu(X_n) < \infty$ for each n).

(4) Prove that $\sum_{n=1}^{\infty} \frac{1}{(z-n)^2}$ defines an analytic function in $\mathbb{C} \setminus \mathbb{N}$.

(5) Let (X, μ) be a finite positive measure space and $f \in L^{\infty}(X, \mu)$, $||f||_{\infty} > 0$. Let $c_n = \int_X |\hat{f}|^n d\mu$. Show that $\frac{c_{n+1}}{c_n}$ converges to $||f||_{\infty}$, as $n \to \infty$.

(6) Let $\Omega = \mathbb{C} \setminus [-1, 1]$ (that is, \mathbb{C} with the real interval $[-1, 1]$ removed) and for $z \in \Omega$ define $f(z) = \frac{1}{z-1} - \frac{1}{z+1} = \frac{2}{z^2-1}$.

(a) Show that for every closed curve γ in Ω we have $\int_{\gamma} f(z) dz = 0$

(b) Prove that there is an $F \in H(\Omega)$ such that $F' = f$. Hint: Think of the proof of one of the equivalences in the Riemann mapping theorem.

(7) Let f be analytic and bounded in the right half plane $\{z : \Re z > 0\}$ and suppose $f(t) \longrightarrow 0$ for $t > 0$ and $t \downarrow 0$. Prove that for any z_0 with $\Re z_0 > 0$, we likewise have $f(tz_0) \longrightarrow 0$ as $t \downarrow 0$.

(8) Let M denote the Lebesgue measurable subsets of [0, 1], and let m denote Lebesgue measure on [0, 1]. Suppose μ is a (positive) measure on ([0, 1], M) and $\mu({0}) = 0$. Define

$$
f(x)=\mu([0,x]),
$$

for $0 \le x \le 1$. Suppose that f is absolutely continuous on [0, 1].

- (a) Prove that $\mu << m$ (that is, μ is absolutely continuous with respect to m).
- (b) Prove that $\mu(E) = \int_E f' dm$, for all $E \in \mathcal{M}$.

(9) Prove that there exists no one-to-one analytic function mapping the annulus ${0 < |z| < 1}$ onto the annulus ${1 < |z| < 2}$.

Analysis Prelim, January 2011

 $\mathbb{D} = \{z : |z| < 1\}$ denotes the open unit disc in the complex plane C.

1. Let $a \in \mathbb{C}$ and let f, g be analytic in a neighborhood of a. Suppose that g has a simple zero at a and that $f(a) \neq 0$. Show that $\text{Res}_{a}(\frac{f}{g}) = \frac{f(a)}{g'(a)}$.

2. If $f \in L^1(0,\infty)$ be real-valued. Show that

$$
\lim_{t \to \infty} t \int_0^\infty \sin\left(\frac{f(tx)}{t}\right) f(tx) dx
$$

exists and find its value.

3. Let $U = \{z \in \mathbb{D} : \text{Im} z > 0\}$. Explicitly construct a 1-1 analytic map from U onto D.

4. Let $f_n \in L^2[0,1]$ with $||f_n||_{L^2} \le 1$ for each $n \in \mathbb{N}$ and $f_n(x) \to 0$ a.e. as $n \to \infty$.

Show that $||f_n||_{L^1} \to 0$ as $n \to \infty$. Suggestion: First show that for all $f \in L^2$

$$
\int_{|f| \ge N} |f| dm \le \frac{1}{N} \|f\|_{L^2}^2.
$$

5. Show that there is no holomorphic function $f : \mathbb{D} \to \mathbb{C}$ such that $|f(z)| \to \infty$ as $|z| \rightarrow 1$.

- 6. Suppose $f \in L^{\infty}([0,1])$. Show that $||f||_{L^p} \to ||f||_{\infty}$ as $p \to \infty$.
- 7. Let F be a normal family of entire functions and define for $n = 0, 1, 2, ...$

$$
A_n = \sup\{|a_n| : f(z) = \sum_{j=0}^{\infty} a_j z^j, f \in \mathcal{F}\}.
$$

Show that $\sum_{n=0}^{\infty} A_n r^n < \infty$ for all $r > 0$.

8. Let $f \in L^1(0,\infty)$. For $x \in [0,\infty)$ set $g(x) = \int_0^x f(t)dt$. Assume that $g\in L^1(0,\infty).$

(a) Show that g is continuous on $[0, \infty)$.

(b) Show that $g(x) \to 0$ as $x \to \infty$.

9. Let *D* be an open domain in C, containing the unit disc. Let $f : D \to \mathbb{C}$ be analytic. If $|f(0)|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(e^{i\theta})|^2 d\theta$, show that *f* is constant.

Analysis Prelim, August 2010

 $\mathbb{D} = \{z : |z| < 1\}$ denotes the open unit disc in the complex plane C.

1. Let $U = \mathbb{C} \setminus [-1,1]$. Explicitly construct a bounded, non-constant, analytic function on U .

2. Find (with proof): $\lim_{n\to\infty} \int_0^n (1-\frac{x}{n})^n dx$.

3. Use the Residue Theorem to calculate

$$
\int_{-\infty}^{\infty} \frac{\cos x}{1 + x^2} dx.
$$

Explain all the necessary estimates.

4. Let f be an L^1 function on $\mathbb R$ (with respect to Lebesgue measure). Show that $g(x) = \sum_{n=1}^{\infty} f(n^2 x)$ converges a.e. and also show that $g \in L^1(\mathbb{R})$.

5. Suppose that f is holomorphic in an open set containing the closure of D. Show $\partial f(\mathbb{D}) \subseteq f(\partial \mathbb{D})$.

6. Let (X, \mathcal{M}, μ) be a measure space. Let $f_1, f_2, f_3, ...$ be a sequence of functions in $L^1(X, \mathcal{M}, \mu)$ converging pointwise to $f \in L^1(X, \mathcal{M}, \mu)$.

Show that f_n converges to f in $\|\cdot\|_1$ (as $n \to \infty$) if and only if $||f_n||_1$ converges to $||f||_1$ (as $n \to \infty$).

7. Let $K = \{0\} \cup \{\frac{1}{n} : n = 1, 2, \dots\}$ and let $f \in Hol(\mathbb{D} \setminus K)$.
Show that if f has a pole at each point $\frac{1}{n}$, $n = 1, 2, \dots$, then the range of f is dense in $\mathbb C$.

8. Let μ, σ be regular finite positive Borel measures on [0,1]. For $g \in$ $C[0,1]$ define $L(g) = \int_0^1 g d\sigma$ and assume that

$$
|L(g)|^2 \le \int_{[0,1]} |g|^2 d\mu \quad \text{ for every } g \in C[0,1]
$$

Show that there is $h \in L^2(\mu)$ such that $\sigma(A) = \int_A h d\mu$ for every Borel set A.

9. Let $f, g \in Hol(\mathbb{D})$ be $1 - 1$ with $f(0) = g(0)$ and $f(\mathbb{D}) \subseteq g(\mathbb{D})$. Show that $|f'(0)| \leq |g'(0)|$.