
Numerical Analysis Preliminary Examination

Friday, August 16, 2024

Instructions

1. There are nine problems. Read each problem carefully.

2. Write your solutions on one side of the provided solution paper, one side only, starting

a new problem at the top of a new sheet of paper.

3. At the top of each solution page, write (a) your full name and (b) the problem number

followed by the page number, counting from one at the start of each new problem. For

example, page three of the fourth problem would be numbered 4-3, and, page two of

the seventh problem, 7-2.

4. Hand in only your solution pages, un-stapled and in numerical order. This exam packet

is yours to keep.

5. You must show your work to receive credit.

6. If, in the solution of a problem, you need to invoke a known fact — that is, a theo-

rem/lemma/proposition, et cetera — you must clearly state the assumptions and con-

clusions of the cited fact. In addition, you must explicitly verify that all the assumptions

are satisfied.

7. If you believe a problem has a typo, missing conditions, or it can be interpreted in several

ways, please clearly indicate so in your work. In this case, fix the problem in a way that

it does not become trivial.



1 Numerical Linear Algebra

1. Suppose A ∈ Rn×n is a nonsingular matrix whose leading principal submatrices are all
nonsingular. Partition A as

A =

[
A11 A12
A21 A22

]
,

where A11 ∈ Rk×k .

(a) Show that there is a matrix M such that[
I O
−M I

] [
A11 A12
A21 A22

]
=

[
A11 A12
O Ã22

]
and write out the explicit formulations for M and Ã22.

(b) Show that [
A11 A12
A21 A22

]
=

[
I O
M I

] [
A11 A12
O Ã22

]
.

(c) The leading principal submatrices of A11 are, of course, all nonsingular. Prove that
Ã22 is also nonsingular.

(d) Both A11 and Ã22 have LU decompositions, say A11 = L1U1 and Ã22 = L2U2. Show
that

A =

[
L1 O
ML1 L2

] [
U1 L−11 A12
O U2

]
.

2. Let A ∈ Cn×n be a normal matrix, with spectrum σ(A) = {λ1, . . . , λn}. Let A = QR be
a QR factorization of A. Prove that

min
1≤j≤n

|λj | ≤ |ri i | ≤ max
1≤j≤n

|λj | ,

for all i = 1, . . . , n.

3. Consider a linear system Ax = b, where A ∈ Cn×n. Richardson’s method is an iteration
method of the form

Mxk+1 = Nxk + b

with M = 1
ω
In, N = M − A = 1

ω
In − A, where ω is a damping factor chosen to make

M approximate A as well as possible. Suppose A is HPD and ω > 0. Let λ1 and λn
denote the smallest and largest eigenvalues of A.

(a) Prove that Richardson’s method converges if and only if ω < 2
λn
.

(b) Prove that the optimal value of ω is ωo =
2

λ1+λn
.
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4. Suppose n ∈ N. Define A ∈ Rn×n via

A =


2 −1 0 · · · 0

−1 2
. . .

...

0
. . .

. . . −1 0
... −1 2 −1
0 · · · 0 −1 2

 .

(a) Find the eigenvalues and eigenvectors of A.

Hint: You may use the notation h = 1
n+1
, pi = ih, i = 0, 1, . . . , n + 1.

(b) Suppose A = D + E + ET , where D is the diagonal part of A and E is the strict
upper triangular part. Find the eigenvalues and eigenvectors of TJ = I − D−1A,
the iteration matrix for the Jacobi method.

(c) Does the Jacobi method converge? Justify your answer.

(d) Construct Richardson’s method for this matrix, using the optimal choice of ω, and

prove directly that it converges.
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2 Numerical Solution of Nonlinear Equations

5. Consider the function f : [0, 1]→ R defined via

f (x) =

{
exp

(
1
x2−1

)
for 0 ≤ x < 1,

0 for x = 1.

(a) Show that if Newton’s method is used with a starting value x0 < 1, that the

method is well-defined and it will converge to ξ = 1, provided x0 is sufficiently

close to ξ = 1.

(b) Show that the convergence is slower than linear convergence.
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3 Numerical Solution of ODEs

6. To approximate the solution to u′(t) = f (t, u(t)) we use the following multistep method

25w k+1 − 48w k + 36w k−1 − 16w k−2 + 3w k−3 = 12τf k+1

Determine the order of this method. Is the method A-stable?

7. Consider the two-stage Runge-Kutta method that corresponds to the collocation points

c1 =
1
3
and c2 = 1.

(a) Compute the tableaux for this collocation method.

(b) Determine the order of this method.

(c) Outline the procedure for determining the A-stability of the method.

Hint: It may be useful to know that the Lagrange interpolating polynomials are given

by

Lj(t) =

r∏
i=1
i ̸=j

(t − ci)
(cj − ci)

, j = 1, . . . , r,

relative to the collocation points c1, . . . , cr .
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4 Numerical Solution of PDEs

8. For the Cauchy problem of the advection problem

∂tu + ∂xu = 0,

we consider the Lax-Wendroff scheme

w k+1j = w kj +
τ2

2h2
(
w kj−1 − 2w kj + w kj+1

)
−
τ

2h

(
w kj+1 − w kj−1

)
,

for approximating its solution. Here h > 0 is the space step size, and τ > 0 is the time

step size. Let µ = τ/h.

(a) Prove that, if µ is constant and µ ≤ 1, then the consistency error Ekj satisfies the
estimate

|Ekj | ≤ C0
(
τ2 + h2

)
,

where C0 > 0 is a constant independent of τ and h.

(b) Use the von Neumann analysis to show that the Lax-Wendroff scheme is stable

provided the CFL condition

0 < µ =
τ

h
≤ 1

holds.

9. Let g : [0, 1] → R be sufficiently smooth and T > 0 a final time. To approximate the
classical solution to the diffusion problem

∂u

∂t
=
∂2u

∂x2
for 0 < x < 1 , 0 < t ≤ T ,

u(0, t) = u(1, t) = 0 for 0 ≤ t ≤ T ,
u(x, 0) = g(x) for 0 ≤ x ≤ 1 ,

we employ the Crank-Nicolson scheme. Let N,K ∈ N, define h = 1
N+1
, τ = T/K, and

µ = τ
h2
. Set, for ℓ = 0, . . . , N + 1, w 0ℓ := g(ℓh). Then, for 0 ≤ k ≤ K − 1, we seek

{w k+1ℓ }N+1ℓ=0 with w
k+1
0 = w k+1N+1 = 0, such that

w k+1ℓ = w kℓ +
µ

2

(
w kℓ−1 − 2w kℓ + w kℓ+1 + w k+1ℓ−1 − 2w

k+1
ℓ + w k+1ℓ+1

)
.

Prove that, for all 0 ≤ k ≤ K − 1,

h

N∑
ℓ=1

(
w k+1ℓ

)2
+
µ

2
h

N+1∑
ℓ=1

(
w k+1ℓ − w k+1ℓ−1 + w

k
ℓ − w kℓ−1

)2
= h

N∑
ℓ=1

(
w kℓ

)2
.

This provides another way to see that the Crank-Nicolson scheme is stable in the L∞τ (L
2
h)

sense. Techniques of this type are called energy methods.
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Numerical Analysis Preliminary Examination

January 18, 2024

Instructions

1. There are nine problems. Read each problem carefully.

2. Write your solutions on one side of the provided solution paper, one side only, starting

a new problem at the top of a new sheet of paper.

3. At the top of each solution page, write (a) your full name and (b) the problem number

followed by the page number, counting from one at the start of each new problem. For

example, page three of the fourth problem would be numbered 4-3, and, page two of

the seventh problem, 7-2.

4. Hand in only your solution pages, un-stapled and in numerical order. This exam packet

is yours to keep.

5. You must show your work to receive credit.

6. If, in the solution of a problem, you need to invoke a known fact — that is, a theo-

rem/lemma/proposition, et cetera — you must clearly state the assumptions and con-

clusions of the cited fact. In addition, you must explicitly verify that all the assumptions

are satisfied.

7. If you believe a problem has a typo, missing conditions, or it can be interpreted in several

ways, please clearly indicate so in your work. In this case, fix the problem in a way that

it does not become trivial.



1 Numerical Linear Algebra

1. Let A ∈ Cd×d .

(a) Show that, for every k ∈ N,

ρ(A) ≤ Ak1/k2 .

(b) Let  > 0, and define

A =
1

ρ(A) + 
A.

Show that ρ(A) < 1.

(c) Show that there is a number k0 ∈ N, such that, for every k ∈ N, k > k0,

Ak1/k2 ≤ ρ(A) + .

(d) Conclude that

ρ(A) = lim
k→∞
Ak1/k2 .

(e) Where did we use that we were working with the matrix 2-norm?

2. Suppose that A ∈ Cd×d is Hermitian, has nonnegative (real) diagonal entries, and it is
striclty diagonally dominant (SDD). Prove that A is Hermitian positive definite (HPD).

3. Let A ∈ Cn×n be upper triangular and nonsingular, and f ∈ Cn. Show that both the
Jacobi and Gauss-Seidel iteration methods converge when used to solve Ax = f .

2 Numerical Solution of Nonlinear Equations

4. Fix R > 0 and define

G := {x ∈ Rn | x1 ≤ R} .
Suppose that φ : G → G is continuous, and assume that there is a point η ∈ G, such
that

η = φ(η).

η ∈ G is called a fixed point of φ in G. Consider the following fixed point iteration
scheme: given x0 ∈ G,

xk = φ(xk−1), k ∈ N.
Assume that φ satisfies the following contraction condition in G:

φ(x)− φ(y)1 ≤ Lx − y1, ∀ x , y ∈ G,

for some real number L ∈ (0, 1). Prove the following:
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(a) η is the unique fixed point of φ in G.

(b) If {xk} ⊂ G converges to a point in G, then it must be that

lim
k→∞
xk = η.

(c) For every x0 ∈ G, {xk} ⊂ G and the sequence converges to a point to η ∈ G,
that is,

lim
k→∞
xk = η.

(d) For every k ∈ N,
xk − η1 ≤ CLk ,

for some C > 0.

3 Numerical Solution of ODEs

5. The implicit midpoint method for solving the IVP u′(t) = f (t, u(t)), t ∈ [0, T ], u(0) =
u0, is defined as

w i+1 = w i + τ f


ti +
τ

2
,
w i + w i+1

2


, i = 0, 1, 2, · · · ,M − 1,

with w 0 = u0, ti = i · τ , τ = T
M
. Prove that the method is globally convergent, and the

global rate of convergence is second order, assuming that u ∈ C3([0, T ]) and f satisfies
an appropriate Lipschitz condition.

6. Given the RK scheme
0 1

6
−1
6
0

1
2

1
6

1
3
0

1 1
6

5
6
0

1
6

2
3

1
6

Show that this is a collocation method, and find its consistency order.

Comment: This method is the so-called Lobatto IIIB method.

4 Numerical Solution of PDEs

7. Find the values of θ for which the θ-method to approximate the heat equation on a

bounded interval is unconditionally stable in L∞τ (L
2
h).
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8. Let a > 0 and consider the transport equation

∂tu + a∂xu = 0, x ∈ R, t > 0, u(x, 0) = u0(x) x ∈ R.

We approximate this problem over a spatial grid of size h > 0 and with a time step of

size τ > 0, with the Crank-Nicolson scheme

w k+1i − w ki
τ

+
a

2


w ki+1 − w ki−1
2h

+
w k+1i+1 − w k+1i−1

2h



= 0.

Show that the symbol (also known as, the amplification factor) of this scheme satisfies

|Ẽτh (ξ)| = 1.

Assuming that the consistency error of this method is O(τ2 + h2), what can you say
about the convergence of this method in L∞τ (L

2
h)?

9. Prove the following discrete maximum principle: Given h > 0 and τ > 0 consider the

explicit Euler method for the solution of the heat equation. Show that if λ = τ/h2 ≤ 1
2

and

τ−1(w k+1i − w ki )− ∆hw ki ≤ 0, 0 < i < N + 1, 0 < k < N,

then w attains its maximum on Γp = {(xi , tk) : i ∈ {0, N + 1}, 0 ≤ k < N}.
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Numerical Mathematics Preliminary Examination
Wednesday August 11, 2021

I. Numerical Linear Algebra

1. The purpose of this problem is to use the the spectral decomposition theorem to

prove the existence of the SVD. For this reason, you cannot invoke the SVD to

solve it. Let A ∈ Cm×n, with m ≥ n.
(a) Show that both AAH and AHA are Hermitian and positive semi-definite. There-
fore, they admit the decompositions

AAH = USSTUH, AHA = VSTSVH,

where U ∈ Cm×m and V ∈ Cn×n are unitary, and S ∈ Rm×n is diagonal and has
non-negative entries. Notice that this same S must appear in both decompo-
sitions.

(b) From the previous two decompositions, show that

A = USVH.

2. Suppose that A ∈ Cn×n is Hermitian with spectrum σ(A) = {λi}ni=1 ⊂ R and the
associated orthonormal basis of eigenvectors S = {w i}ni=1. Given ε > 0, suppose
that x ∈ Cn! is a unit vector (‖x‖2 = 1) satisfying

0 < ‖x − w k‖2 < ε,

for some k ∈ {1, . . . , n}. Prove that
!!xHAx − λk

!! < 2ρ(A)ε2,

where ρ(A) is the spectral radius of A.
Hint: If you can not prove this result, prove a simpler one.

3. Let A = [ai ,j ] ∈ Cn×n be invertible and b ∈ Cn. Prove that, if A is strictly diagonally
dominant, i.e.,

|ai ,i | >
"

k ∕=i

|ai ,k | , ∀ i = 1, . . . , n,

then for any starting value x0, the classical Jacobi iteration method for approximat-

ing the solution to Ax = b is convergent.

4. Let A ∈ Cm×n and b ∈ Cm, with m > n. Assume that rank(A) = n, and let
A = Q̂R̂ be a reduced QR factorization of A and A = UΣVH be a singular value
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decomposition (SVD) of A. Recall that the Moore-Penrose pseudoinverse of A is
defined by

A† = VΣ†UH,

where Σ† = diag(σ−11 , . . . ,σ
−1
r , 0, . . . , 0) ∈ Rn×m and r ≤ n is the rank of A. Show

that x ∈ Cn is a least squares solution to Ax = b iff R̂x = Q̂Hb iff x = A†b.

II. Numerical Solutions of Nonlinear Equations

5. Suppose that f ∈ C1([a, b];R), and, for some ξ ∈ (a, b), f (ξ) = 0. Assume that
there are positive constants m,M ∈ R, such that 0 < m ≤ f ′(x) ≤ M, for all
x ∈ [a, b]. To approximate the zero ξ, consider the following algorithm: given
x0 ∈ [a, b], compute x1, x2, . . ., via

τ−1(xk+1 − xk) + f (xk) = 0, k = 0, 1, 2, . . .,

where τ ∕= 0 is a parameter to be determined.
(a) Prove that there is one and only one zero in [a, b].

(b) Show that if 0 < τ < 2/M the method converges, provided x0 is sufficiently

close to ξ.

(c) Show that the optimal value of τ is given by τ0 =
2

m+M
and that, in this case,

we have the error estimate:

|ξ − xk | ≤ qk |ξ − x0|, q =
M −m
M +m

.

III. Numerical Solutions of ODEs

6. Consider

u′(t) = f (t, u(t)) , t ≥ 0, u (0) = u0,

where f : [0, T ]×R→ R is continuous in its first variable and Lipschitz continuous
in its second variable.

(a) Prove that the forward Euler method converges.

(b) Prove that the backward Euler method converges.

Clearly indicate the smoothness assumptions you are using to prove convergence.

You may assume the appropriate local truncation error estimates without proof.

7. Show that the BDF3 method

w k+3 − 18
11
w k+2 +

9

11
w k+1 − 2

11
w k =

6

11
sf (tk+3, w

k+3)

satisfies the root condition and is of order 3. Conclude, therefore, that it must be

a convergent method. Use the boundary locus method to prove that BDF3 cannot

be A-stable.
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IV. Numerical Solutions of PDEs

8. A general linear explicit finite difference method for approximating a time-dependent

Cauchy problem can be written in the form

w n+1j =
"

p∈P

apw
n
j+p,

where P is a finite subset of Z and ap are the weights, which depend upon the time
and space step sizes. We say that the method reproduces the constant state if,

whenever w n ≡ 1, we obtain that w n+1 ≡ 1.
(a) Show that if the method reproduces the constant state, then

"

p∈P

ap = 1.

(b) A method is max-norm non-increasing iff ‖w n+1‖L∞h ≤ ‖w
n‖L∞h . A method is

positivity preserving iff whenever w nℓ ≥ 0, for all ℓ ∈ Z, then w n+1ℓ ≥ 0, for all
ℓ ∈ Z. Show that if a method reproduces the constant state and is max-norm
non-increasing, then the method is positivity preserving.

Hint: Suppose that w nℓ ≥ 0 and w nk = ‖w n‖L∞h = α ≥ 0, for some k ∈ Z.
Now define a new variable ηnℓ := w

n
ℓ − α/2. Apply the method to ηn, and use

the fact that −α/2 ≤ ηn+1ℓ ≤ α/2, for all ℓ ∈ Z, to conclude the result.
(c) Show that, if a method reproduces the constant state and is max-norm non-

increasing, then ap ≥ 0 for all p ∈ P .
9. Consider the diffusion problem

ut = uxx , 0 < x < 1, 0 < t ≤ T
u(0, t) = φ0(t), 0 < t ≤ T,
u(1, t) = φ1(t), 0 < t ≤ T,
u(x, 0) = g(x), 0 ≤ x ≤,

where g(0) = φ0(0) and g(1) = φ1(0) for consistency. Define h =
1
m+1
, τ = T

N
,

µ = τ
h2
, xℓ = ℓ · h, tn = n · τ , gℓ = g(xℓ), φni = φi(tn), i = 0, 1. The forward Euler

method for this problem is define as follows:

w n+1ℓ = w nℓ .+ µ
#
w nℓ−1 − 2w nℓ + w nℓ+1

$
, 1 ≤ ℓ ≤ m, 0 ≤ n ≤ N − 1,

with w n0 = φ
n
0, w

n
m+1 = φ

n
1, 0 ≤ n ≤ N, and w 0ℓ = gℓ, 1 ≤ ℓ ≤ m. Suppose u ∈

C4([0, 1]× [0, T ]) and define unℓ = u(xℓ, tn). Define enℓ := unℓ − w nℓ , 0 ≤ ℓ ≤ m + 1,
0 ≤ n ≤ N, en = [en1 , ..., enm]

T , 0 ≤ n ≤ N. Suppose that µ = µ0 ≤ 1
2
. Prove that

max
0≤n≤N

‖en‖∞ ≤ Ch2,

where C > 0 is independent of h and τ . You may assume the appropriate estimate

of the local truncation error with proof.
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NUMERICAL MATHEMATICS PRELIMINARY EXAMINATION:
AUGUST 2020

Instructions

Read each problem carefully. You must show your work to receive credit. If you believe a
problem has a typo, missing conditions, or can be interpreted in several ways, please clearly
indicate so in your work. In this case, fix the problem in a way that it does not become
trivial.

Please stay safe, wear a mask, and be mindful of social distancing.

1. Numerical Linear Algebra

1. The purpose of this problem is to provide a proof of existence of the SVD. For this reason,
you cannot use the SVD to solve it.

Let A ∈ Cm×n with m ≥ n.
a) Show that both AA∗ and A∗A are Hermitian and positive semidefinite. Therefore they

admit the decompositions

AA∗ = UΣΣᵀU∗, A∗A = V ΣᵀΣV ∗,

where U ∈ Cm×m and V ∈ Cn×n are unitary and Σ ∈ Rm×n is diagonal and has
nonnegative entries. Notice that this must be the same matrix in both decompositions.

b) From the previous two decompositions show that A = UΣV ∗. Hint: Show that the
columns of U are eigenvectors of AA∗.

2. Let A ∈ Cn×n. Recall that we say that A is strictly diagonally dominant of dominance
δ > 0 if

|ai,i| ≥ δ +
∑
j 6=i

|ai,j|, i = 1, . . . , n.

Let A be strictly diagonally dominant of dominance δ > 0.
a) Show that A is nonsingular and that

‖A−1‖∞ ≤ δ−1.

b) Show that if we apply Gaussian elimination without pivoting to

Ax = f,

then the procedure reaches completion without encountering any zero pivot elements.
c) Assume, in addition, that A ∈ Rn×n. Show that all the entries of A−1 are nonnegative.

3. Let A ∈ Cm×n with m ≥ n be full rank, and let A = Q̂R̂ be a reduced QR factorization
of A.
a) Show that P = Q̂Q̂∗ is an orthogonal projection onto R(A), the range of A.
b) Let f ∈ Cm. Show that the vector x ∈ Cn is a least squares solution to Ax = f iff

Ax = Pf , where P is the orthogonal projection onto R(A).



4. Let A ∈ Rn×n be an SPD matrix with σ(A) = {λi}ni=1 and 0 < λ1 ≤ . . . ≤ λn. Denote by
Pk the space of polynomials of degree at most k ∈ N, that take the value 1 at zero, and

P̃k = {p ∈ Pk : p(λn) = 0} .

a) Show that the error in CG satisfies

‖x− xk‖A ≤ ‖x− x0‖A inf
p∈P̃k

max
τ∈[λ1,λn−1]

|p(τ)|.

b) From the previous item show that the error in CG satisfies

‖x− xk‖A ≤ ‖x− x0‖A
λn − λ1
λn

inf
p∈Pk−1

max
τ∈[λ1,λn−1]

|p(τ)|.

2. Numerical Solution of Nonlinear Equations

1. Consider the nonlinear equation ex = sinx.
a) Show that there is a solution x∗ ∈ (−5/4π,−π).
b) Consider the following iterative methods:

xk+1 = ln sin(xk), xk+1 = arcsin exk .

What can you say about the local convergence of these methods? About their conver-
gence order?

c) Provide a method that converges quadratically to x∗. You may invoke a Theorem, but
you must precisely state it and verify its conditions.

3. Numerical Solution of ODEs

1. Consider the RK methods given by the tables

0 1
4
−1

4
2
3

1
4

5
12

1
4

3
4

1
3

5
12
− 1

12
1 3

4
1
4

3
4

1
4

a) Show that these methods satisfy all necessary order conditions to be of order at least
two.

b) Show one of these methods is a collocation method, while the other one is not. For
the collocation method find its order of consistency.

2. Show that the explicit multistep method

wk+3 + α2w
k+2 + α1w

k+1 + α0w
k = s

[
β2f(tk+2, w

k+2) + β1f(tk+1, w
k+1) + β0f(tk, w

k)
]

for approximating the solution to the initial value problem

u′(t) = f(t, u(t)) , u(0) = u0

is fourth order only if α0 + α2 = 8 and α1 = −9. Prove that this method cannot be both
fourth order and convergent.



4. Numerical Solution of PDEs

1. Let Gh be a uniform grid, of spacing h, of the unit square (0, 1)2 and let Vh denote the
space of grid functions that vanish on the boundary of (0, 1)2. Recall that the discrete
(finite difference) Laplacian is defined on Vh via

(∆hw)i,j =
wi−1,j + wi+1,j + wi,j−1 + wi,j+1 − 4wi,j

h2
,

where (ih, jh) ∈ Gh are in the interior.
We say that a function w ∈ Vh is discrete subharmonic if

∆hw ≥ 0.

Show that a discrete subharmonic function attains its maximum at the boundary.
2. Let a, b ∈ R, b− a = ` > 0. Given a function w ∈ C([a, b]) define W ∈ P1 by:

W (a) = w(a),

∫ b

a

W (x)dx =

∫ b

a

w(x)dx.

show that there is a constant, independent of `, such that for every w with w′′ ∈ L2(a, b)
we have

‖w −W‖L2(a,b) ≤ C`2‖w′′‖L2(a,b).

Hint: Recall that, by passing through the Taylor polynomial, one must only check two
conditions.

3. Find the values of θ for which the θ-method for the discretization of the heat equation on
a bounded interval is unconditionally stable in L∞s (L2

h).


























































































