Numerical Analysis Preliminary Examination

Friday, August 16, 2024

Instructions

1. There are nine problems. Read each problem carefully.

2. Write your solutions on one side of the provided solution paper, one side only, starting
a new problem at the top of a new sheet of paper.

3. At the top of each solution page, write (a) your full name and (b) the problem number
followed by the page number, counting from one at the start of each new problem. For
example, page three of the fourth problem would be numbered 4-3, and, page two of
the seventh problem, 7-2.

4. Hand in only your solution pages, un-stapled and in numerical order. This exam packet
IS yours to keep.

5. You must show your work to receive credit.

6. If, in the solution of a problem, you need to invoke a known fact — that is, a theo-
rem/lemma/proposition, et cetera — you must clearly state the assumptions and con-
clusions of the cited fact. In addition, you must explicitly verify that all the assumptions
are satisfied.

7. If you believe a problem has a typo, missing conditions, or it can be interpreted in several
ways, please clearly indicate so in your work. In this case, fix the problem in a way that
it does not become trivial.



1 Numerical Linear Algebra

1. Suppose A € R"*" is a nonsingular matrix whose leading principal submatrices are all
nonsingular. Partition A as
A — [ A A }

Azy A
where A;; € Rk*k

(a) Show that there is a matrix M such that
| O All A12 _ All '512
-M A1 Ao O Ax

and write out the explicit formulations for M and KQQ.

(b) Show that
A A | _ | 1O Air Ar
Ax1 Ag M O Ax |
(c) The leading principal submatrices of Ay; are, of course, all nonsingular. Prove that
A is also nonsingular.

(d) Both A;; and A, have LU decompositions, say A;; = L;U; and Ass = LoUs. Show

that
A L, O U; L1‘1A12
| ML; L, 0 U, '

2. Let A € C™" be a normal matrix, with spectrum o(A) = {\y, ..., Ant. Let A= QR be
a QR factorization of A. Prove that

min [N < [rii] < max [\,
1<j<n 1<<n

foralli=1,..., n.

3. Consider a linear system Ax = b, where A € C"*". Richardson’s method is an iteration

method of the form
Mx* Tt = Nx* + b

with M = %I,,, N=M-A= %I,, — A, where w is a damping factor chosen to make
M approximate A as well as possible. Suppose A is HPD and w > 0. Let A\; and X\,
denote the smallest and largest eigenvalues of A.

(a) Prove that Richardson’s method converges if and only if w < %

2

(b) Prove that the optimal value of w is wo = 555



4. Suppose n € N. Define A € R™" via

2 -1 0 - 0
-1 2
A= 0 -1 0
: -1 2 -1
| 0 -+ 0 -1 2|

Find the eigenvalues and eigenvectors of A.

Hint: You may use the notation h = =5, p; = ih, i=0,1,..., n+1.
Suppose A = D + E + E’, where D is the diagonal part of A and E is the strict
upper triangular part. Find the eigenvalues and eigenvectors of T, = | — DA,

the iteration matrix for the Jacobi method.
Does the Jacobi method converge? Justify your answer.

Construct Richardson’s method for this matrix, using the optimal choice of w, and
prove directly that it converges.



2 Numerical Solution of Nonlinear Equations

5. Consider the function f : [0, 1] — R defined via

Flx) = exp () for 0<x<1,
0 for x=1.

(a) Show that if Newton's method is used with a starting value x; < 1, that the
method is well-defined and it will converge to & = 1, provided Xxg is sufficiently
close to £ = 1.

(b) Show that the convergence is slower than linear convergence.



3 Numerical Solution of ODEs

6. To approximate the solution to v/(t) = f(t, u(t)) we use the following multistep method
25w Tt — 48wk + 36w Tt — 16WFT? 4 3w 3 = 127 FK !
Determine the order of this method. Is the method A-stable?

7. Consider the two-stage Runge-Kutta method that corresponds to the collocation points
_ 1 _
ca=3and =1

(a) Compute the tableaux for this collocation method.
(b) Determine the order of this method.
(c) Outline the procedure for determining the A-stability of the method.

Hint: It may be useful to know that the Lagrange interpolating polynomials are given
by

H(g—c, J=1,..., r
I#J

relative to the collocation points ¢, .. ., Cr.



4 Numerical Solution of PDEs

8. For the Cauchy problem of the advection problem
6tU + aXL/ =0,

we consider the Lax-Wendroff scheme
k+1 k k K T K k
W W+ﬁ(j—1_2wj +V‘/j+1>_%(v‘/j+l_vvj—1>’
for approximating its solution. Here h > 0 Is the space step size, and 7 > 0 is the time
step size. Let u = T7/h.

(a) Prove that, if i is constant and u < 1, then the consistency error Sj‘ satisfies the
estimate
€] < Co (T2 + 17),
where Cy > 0 is a constant independent of 7 and h.

(b) Use the von Neumann analysis to show that the Lax-Wendroff scheme is stable
provided the CFL condition

O<u=-<1

=>4

holds.

9. Let g :[0,1] — R be sufficiently smooth and T > 0 a final time. To approximate the
classical solution to the diffusion problem

ou  B%u
- - <
at E for 0 <x<l1l, 0<t<T,

u(0,t)=u(l,t)=0 for 0<t<T,
u(x,0) = g(x) for 0<x<1,
we employ the Crank-Nicolson scheme. Let N, K € N, define h = N+l T=T/K, and

p= . Set, for£ =0,..., N+ 1, w) = g(¢h). Then, for 0 < k < K — 1, we seek
{w, A with witt = wyitl = 0, such that

w, = w + g (Wey — 2wy + wyy + wp ! — 2w ™ 4+ )
Prove that, forall 0 < k < K — 1,
N N+1 N ,
hz k+1 hz (Wzkﬂ k+1 + We _ We 1 — hz (Wek) _
=1 =1 =1

This provides another way to see that the Crank-Nicolson scheme is stable in the L3°(L?)
sense. Techniques of this type are called energy methods.



Numerical Analysis Preliminary Examination

January 18, 2024

Instructions

1. There are nine problems. Read each problem carefully.

2. Write your solutions on one side of the provided solution paper, one side only, starting
a new problem at the top of a new sheet of paper.

3. At the top of each solution page, write (a) your full name and (b) the problem number
followed by the page number, counting from one at the start of each new problem. For
example, page three of the fourth problem would be numbered 4-3, and, page two of
the seventh problem, 7-2.

4. Hand in only your solution pages, un-stapled and in numerical order. This exam packet
IS yours to keep.

5. You must show your work to receive credit.

6. If, in the solution of a problem, you need to invoke a known fact — that is, a theo-
rem/lemma/proposition, et cetera — you must clearly state the assumptions and con-
clusions of the cited fact. In addition, you must explicitly verify that all the assumptions
are satisfied.

7. If you believe a problem has a typo, missing conditions, or it can be interpreted in several
ways, please clearly indicate so in your work. In this case, fix the problem in a way that
it does not become trivial.



1 Numerical Linear Algebra

1. Let A e CI4,
(a) Show that, for every k € N,
p(A) < [IAF]1".

(b) Let € > 0, and define

Show that p(A¢) < 1.
(c) Show that there is a number ky € N, such that, for every k € N, k > kg,

IAK] < p(A) + €.

(d) Conclude that
p(A) = lim [IA%];/".
—00
(e) Where did we use that we were working with the matrix 2-norm?

2. Suppose that A € C?*9 is Hermitian, has nonnegative (real) diagonal entries, and it is
striclty diagonally dominant (SDD). Prove that A is Hermitian positive definite (HPD).

3. Let A € C™" be upper triangular and nonsingular, and f € C". Show that both the
Jacobi and Gauss-Seidel iteration methods converge when used to solve Ax = f.

2 Numerical Solution of Nonlinear Equations

4. Fix R > 0 and define
G ={xeR"| (x| <R}.

Suppose that ¢ : G — G is continuous, and assume that there is a point 7 € G, such
that

n=¢(n).
n € G is called a fixed point of ¢ in G. Consider the following fixed point iteration

scheme: given xq € G,
Xk = ¢(xk-1), keN.

Assume that ¢ satisfies the following contraction condition in G:

[6(x) =o)L < Llix -yl VxyeG,

for some real number L € (0,1). Prove the following:



(a) m is the unique fixed point of ¢ in G.
(b) If {xx} C G converges to a point in G, then it must be that

lim x, = 7.
k—o00

(c) For every xo € G, {xx} C G and the sequence converges to a point to n € G,
that is,

fm %=
(d) For every k € N,
I =l < €LY,

for some C > 0.

3 Numerical Solution of ODEs

5. The implicit midpoint method for solving the IVP «/(t) = f(t, u(t)), t € [0, T], u(0) =
Ug, is defined as

: : T w +wtl .
wtt=w' 4+ 1f t,»—l——,+7 , =012+ ,M-1,
2 2
withwl =g, ti=i-7, 7= % Prove that the method is globally convergent, and the
global rate of convergence is second order, assuming that u € C3([0, T]) and f satisfies

an appropriate Lipschitz condition.

6. Given the RK scheme

0l¢ —+ O
171 1
AL
12 2 0
1 2 1
6 3 6

Show that this is a collocation method, and find its consistency order.

Comment: This method is the so-called Lobatto IlIB method.

4 Numerical Solution of PDEs

7. Find the values of 8 for which the 8-method to approximate the heat equation on a
bounded interval is unconditionally stable in L3°(L?).



8. Let a > 0 and consider the transport equation
Oiu+adu=0, xeR, t>0, u(x,0) = up(x) xeR.

We approximate this problem over a spatial grid of size h > 0 and with a time step of
size T > 0, with the Crank-Nicolson scheme

k+1 k kK k k1 _ ) ktl
Wi T W a | Wi Wi—1+Wi+1 Wii

T 2 2h 2h =0

Show that the symbol (also known as, the amplification factor) of this scheme satisfies
EF )= 1.

Assuming that the consistency error of this method is O(72 + h?), what can you say
about the convergence of this method in L2°(L3)?

9. Prove the following discrete maximum principle: Given h > 0 and 7 > 0 consider the
explicit Euler method for the solution of the heat equation. Show that if A = 7/h? < %
and

T W —wf) — Awf <0, 0<i<N+1, 0<k<N,

1

then w attains its maximum on ', = {(x;, tx) : 1 € {0, N+ 1}, 0 < k < N}.



Numerical Analysis Preliminary Examination

August 14, 2023

Instructions

1. There are nine problems. Read each problem carefully.

2. Wirite your solutions on one side of the provided solution paper, one side only, starting
a new problem at the top of a new sheet of paper.

3. At the top of each solution page, write (a) your full name and (b) the problem number
followed by the page number, counting from one at the start of each new problem. For
example, page three of the fourth problem would be numbered 4-3, and, page two of
the seventh problem, 7-2.

4. Hand in only your solution pages, un-stapled and in numerical order. This five-page
exam packet Is yours to keep.

5. You must show your work to receive credit.

6. If, in the solution of a problem, you need to invoke a known fact — that Is, a theo-
rem/lemma/proposition, et cetera — you must clearly state the assumptions and con-
clusions of the cited fact. In addition, you must explicitly verify that all the assumptions
are satisfied.

7. If you believe a problem has a typo, missing conditions, or it can be interpreted in several
ways, please clearly indicate so in your work. In this case, fix the problem in a way that
it does not become trivial.



Numerical Linear Algebra

. The purpose of this problem is to provide a proof of existence of the SVD. For this
reason, you cannot use the SVD to solve It.

Let A € C™" with m > n.

(a) Show that both AA" and A"”A are Hermitian and positive semi-definite. Therefore
they admit the decompositions

H_uzxTuX, AHA = vy Ty vH,

where U € C™™ and V € C"*" are unitary and ¥ € R™*" is diagonal and has
nonnegative entries. Notice that this must be the same matrix in both decompo-
sitions.

(b) From the previous two decompositions show that A = UL V. Hint: Show that
the columns of U are eigenvectors of AA".

. Let A€ C™". Let A = [a,] be strictly diagonally dominant, of dominance § > 0, that
IS,

|8”|>6+Z|8U| 1'21 ..... n.

ﬁfr
Show that A is nonsingular and that

A <671

. Let A € C™" be nonsingular, f € C”, and x € C” be such that A"Ax = APf. Let
P € C™" be such that 2||P||> < 0,(A)?, where 0,(A) is the smallest singular value of
A.
(a) Show that A”A + P is nonsingular.
(b) Let y € C" be such that (AYA + P)y = A"f. Define, for z € C", r(z) = f — Az.
Show that
r(y) — r(x) = A(A"A +P)"Px,
IPll2
Ir(y) = r(x)ll2 < 2k2(A)* =[x,
IA]]2
where Kk»(A) is the spectral condition number of A.

(c) Let g € C" be such that ||g|]» < ||A"||,||f||> and w € C" satisfy A"Aw = Af+g.
Show that
[x — w2

[1x[]2

A ol
A==
= r



2 Numerical Solution of Nonlinear Equations

4. Let a,b € R with a < b. Assume that f € C3([a, b]) and that £ € (a, b) is a root of f
of multiplicity 2, that is,
f(§) =0=r(¢),

but f”(§) # 0. Consider the following Modified Newton’s Method for finding the value
of the root:
f(xn)

’H(Xn) .
Prove that the method converges locally and quadratically to §.

Xn+1 = Xp —2

3 Numerical Solution of ODEs

5. Consider the BDF2 scheme for approximating the solution to v/(t) = f(t, u(t)),

wk+2 _ %Wk—i—l 4 %Wk

2
g'.r

= f(tysa, WK2).

Prove that the scheme is root stable, consistent of order 2, and A-stable.

6. Recall that all r-stage Runge-Kutta (RK) schemes are uniquely described by their

Butcher tableau
cl A
EE

A diagonally implicit RK (DIRK) scheme is one for which A = [a;;]7_, is lower trian-
gular.

(a) Derive all the second order, two-stage, DIRK schemes, such that

I. The matrix A has positive diagonal entries, that is, a;; > and a,» > 0.
Il. The second stage coincides with the solution at the next step, that s, b =
[32,1, 32,2]-

Show that if, in addition, we wish that the diagonal entries coincide, that is,
a1.1 = a2, then the only possible scheme is the so-called Alexander's scheme:

¥yl v O 1
1|1—7 « y=14+—. (1)
11— v V2

(b) Investigate the A-stability of Alexander’s scheme (1) by analyzing the amplification
factor _
g(z) =1+zb" (1 — zA) 11,



4

Numerical Solution of PDEs

7. Consider the following two point boundary value problem:

—(p(x)u") + r(x)u = f(x), x€(0,1), u(0) = u(1) = 0.

Assume that p € C*([0, 1]), with p(x) > py > 0, for all x € [0,1], r € C([0, 1]), with
r(x) >0, for all x € [0, 1], and f € L2(0,1).

(a) Write a weak formulation of this problem, and show that it has a unique solution

u e H(0,1).

(b) Let n € N, n > 2. Consider a uniform mesh of size h = 1/n, and a finite element

space of piece-wise linear functions. Let up denote the finite element solution to
the two point boundary value problem. Show that, provided v is smooth enough,

I = i) < Chll o,

for some constant C > 0.

(c) Let n=3, p(x) =1, r(x) =0, and f(x) = x. Explicitly write the ensuing stiffness

matrix and load vector from the previous item.

8. We say that the eigenvalue problem

—u"(x) = Au(x), x€(0,1), u(0) = u(1) =0,

has a solution if there are A € R and a nonzero function u € C?(0,1) N C([0,1]), for
which the equation and boundary conditions hold point-wise.

(a)

Show that, for every m € N, the pair (Am, un) with

Ay = mPm2, Um(x) = sin (-\/)\mx) ,
solves the eigenvalue problem.

Let N e N, h= % > 0, and Q;, be a uniform mesh over (0, 1) with mesh size
h. Vo(Q2s) denotes the set of all grid functions on €, that vanish at x = 0
and x = 1. Consider the following finite difference (FD) approximation of the
eigenvalue problem: Find p € R and a nonzero grid function w € V,(€2,,) such
that

—Apw = uw,

where

Wjt1 — 20 + W
h? '
For every m € N, define w,, € Vy(25,) via

Wi, = sin (\/)\,mih) .

Find ., so that the pair (4m, w;,) solves the discrete eigenvalue problem.

A.‘7'-’1’} -



(c) For m € N, establish the following error estimate

h2
Am_ m< 44_-
Am = bm| < m™m

Hint: For every 6, there is & with |£| < 1 such that

1 1
1 —cos(f) = =6 — ﬂff}"".

2

9. The purpose of this problem Is to extend the tools for analyzing schemes to a new
spatio-temporal PDE. Specifically, to approximate the following dispersive system

atu—i_axxxuzo, t>0, XGR

let us employ the following scheme

k+1 .k k 2k k _ ok
Wi Wi n Wiio — 3w, + 3w —wi,
T h3

= 0.

(a) Given h > 0, show that, for any v € C3(R),

Vi+2 — 3Vt + 3V — Vi
h3

mn h
= V() + 3v¥(x) + (1),

where x; = j - h, for all j € Z, and v; := v(X;).

(b) Assuming that the PDE solution v : R x [0, T] — R is sufficiently smooth, with
sufficiently bounded derivatives, prove that the consistency error, £[u], satisfies

[Elu)(x, )] < C (T +h),

for some C > 0 that is independent of 7, h, J, and k.

(c) Let v = h% Assume that, as 7 and h change, v remains constant. Find the

symbol (amplification factor) of the scheme.



January 2023 Numerical Analysis Prelim

Numerical Linear Algebra

. Let A = [a;j] € C"™" be strictly (row-wise) diagonally dominant, that is,

n
|aii| > Z laijl, 1=1,2,..., n.
J=1
J#i
Prove that the Gauss—Seidel method for approximating the the solution of Ax = b is
convergent for arbitrary initial values xg.

. Given a matrix A € R™*". Find the relation between the singular values of A and the
eigenvalues of the matrix

O A
- ] (m+n)x(m+n)
B { AT o] eR .

. Let Ae R™" and b € R™ with m > n. We say that z € R" is a least squares solution
to "Ax = b" Iff

z € argmin{||Ax — b||> | x € R"}.
Assume that rank(A)= n. Prove that z € R” solves the least squares problem iff it
solves the normal equation

ATAz = A'b.
Argue that the solution z € R"” must be unique.

. Let A € C"™" be given. Show that, if ||A|| < 1, for some natural (induced) norm, then
I — A is non-singular and

1
1 —[[A]

] .
T pay =10~ =

2 Numerical Solutions of Nonlinear Equations

. Consider the equation f(x) := x™ — b"x + ab" = 0, where n € N and a, b € (0, o0)
are given.
(a) Show that the equation has exactly two distinct positive roots if and only if

nb

a< ——m—.
(n+ 1)

Hint: Analyze the convexity of f.



(b) Assuming the condition established in (a) holds, show that Newton's method
converges to the smaller of the two positive roots when started at x; = a, and to
the larger of the two when started at xq = b.

(c) What happens when xo = 2527

3 Numerical Solutions of ODEs

6. The BDF2 method for approximating the solution to u" = f(t, u) is given by
4 1 2
Wn+2 _ §w”+1 + §Wn _ §‘Tf(fn_2, Wn—2)
Use the boundary locus method to examine the A-stability the method. Is the BDF2
method is A-stable?
7. (a) Find all of the values of a and 3 so that the 3-step method
Wk+3 4 a(wk—i-z _ Wk+1) _ Wk _ Tﬁ [f(tk+2. Wk+2) 4 f(fk-i-l: Wk—i—l)}

Is of order 4.
(b) Does the resulting method does satisfy the root condition?
(c) Is the scheme A-stable?

4 Numerical Solutions of PDEs

8. Consider the Lax-Wendroff scheme,

2.2
aT at , ,

S (Wen—l — 2wy, + Wen—l) ~ 25 (We—l - Wen—l) :

n+1 __ n
Wﬂ = Wﬂ +

for the approximating the solution of the advection equation %—i—a% = 0, where a > 0.
Use von Neumann's method to show that the Lax-Wendroff scheme is stable provided
the CFL condition

Ty

s
is enforced.

9. The 6-method for finding approximate solutions to the homogeneous heat equation

reads
k

=Ny (W  +(1-0)w ), 0<H<1.

(a) Find the value or values of 6 for which the 68-method is unconditionally stable in
L (Ly).

(b) For all other values of 8, state the requirements for conditional stability in L2 (L°).



2022 August Numerical Analysis Prelim

1 Numerical Linear Algebra

1. Let A € C"*" be Hermitian positive definite (HPD). After k steps of Gaussian elimina-
tion without pivoting, A will be reduced to the form

k K
ALK — A(11) Aéj(z;
O A

where AY) is an (n — k) x (n — k) matrix. Prove the following by induction:

(a) AY) is HPD.
(b) a% <a ™ fork<i<n, k=12 ,n-1.
(c) Gaussian elimination will continue until completion, and therefore, A has an LU

factorization.

2. Suppose that A € R"*" is SPD. Consider the following Cholesky iteration: .
Step 1: Set k =1 and Ag := A.

Step 2: Compute the lower triangular matrix G, using the Cholesky factorization:

Ak_]_ — GKGI
Step 2: Define
Ak = GIG;{

Step 3: Increase k by one. Go back to Step 2.

(a) Prove that Ay is similar to Ag, for each k € N and conclude that the above Cholesky
iteration process is well defined by proving that A i1s SPD for each k € N.

(b) Now, assume that n = 2 and, for concreteness,

_|a b 2%2
Ao Y cxen

Suppose that A is SPD and a > c¢. Applying the Cholesky iteration, show that
Ay converges to A := diag (A1, A2), as k — oo, where A; > XAy, > 0, and Ay, A, €
a(A).



3. Suppose that m > n and the matrix A € C™*" has the form

where A; Is a nonsingular matrix of dimension n x n and A, Is an arbitrary matrix of
dimension (m — n) x n. Prove that, in general,

AT, < A
where AT = (AHA)~*A" is the pseudo-inverse.

4. Let A € R"™" be symmetric positive definite (SPD) and b € R” be given. To solve
the system Ax = b, we employ the conjugate gradient (CG) method, starting from the
initial guess xg = 0.

(a) Suppose that A has only two eigenvalues, 0 < A; < X,. Prove that, for every
A€ (A, )

1——|.
A

2 Y
lesl < aWleall o) = mix[1 -3
(b) Prove that
1 _
= (A1 + X)) = argmin g(A).
2 Ae(hr2)
Hint: max{|al, |b|} = 3|a+ b| + 3|a— b|.
(c) Use the last fact to show that
Ko —1
Ko +1

where K> Is the spectral condition number of A.

lewlla < lleolla

2 Numerical Solutions of Nonlinear Equations

5. Consider the equation
f(t) :=tin(t)—c=0, (1)

where t > 0, c € R.

(a) Under what condition on ¢ does (1) have a unique positive root, which we label
t=a?

(b) Under the condition of (a), determine the largest interval in which Newton's
method, applied to solve (1), converges globally.

(c) Exhibit the formula for the iterates t, of Newton's method, and show that, taking

th > @,
ley1 — 1

0< li < |
S -2 S 20+ 0



3 Numerical Solutions of ODEs

. For approximating the solution of the IVP
u'(t) = f(t,u), u(0)= up,

consider the following multistep method:
q q .
> awk =13 bif(tyy, wh), (2)
j=0 j=0

where {a;}] ;, {bj}_y € R. For the linear g—step method (2) we define the first and
second characteristic polynomials, respectively, as

g q
Y(u) = Zaj,u} e P, x(p) == Z bt € Pg.
Jj=0

j=0

Suppose that . .
Re[y(e”)x(e™)] = 0. (3)

(a) Show that the method is either A-stable or its linear stability domain is empty.

(b) Consider the following one-parameter family of two step methods
w2 —wh = T[BF? + 2(1 - B)F* 4 BF],

where ¥ := f(t,, w¥). Show that the scheme satisfies (3). Further, use this fact
to show that, iIf 3 > % the method is A-stable.

. Determine the order of consistency of the following implicit Runge-Kutta scheme: with
v =+3/6
+7|5+Y
7| —2v
1
2

P2 ] =

_|_

1
2
1
2

M=

Pl ~2

Is the method A-stable?

4 Numerical Solutions of PDEs

. Consider the advection equation, us + u, = 0, and the associated Lax-Friedrichs ap-
proximation scheme, given by

1 1
w, = 5(1 +u)w, , + 5(1 —p)wg,, neN,

where p = 1.



Numerical Mathematics Preliminary Examination
Tuesday January 18, 2022

[. Numerical Linear Algebra

1. (a) Let A € C™" be such that there is § € [0, 1] for which
|AYA —1]|, < 6.

Show that if ¢ Is a singular value of A, then

V1—-0<o<V1+o.
(b) A matrix A € C"™" is said to satify the Cordes condition if there is € € (0, 1] for
which 5
Az 1

(trA> ~ n—1+¢

Show that, if n = 2, every SPD matrix satisfies the Cordes condition.

2. Let A € C™" be nonsingular and f € C". Denote by x € C" the (unique) solution of
Ax = f.

To approximate x, starting from an arbitrary xo € C”, we use the following iterative
scheme

Xk11 — (I + BA)Xk — Bf,
where B € C"™" is some nonsingular matrix.

(a) Show that if there is p < 1 for which
o(BA)Cc{zeC||z+1|<p},

then this method converges.

(b) Let A be HPD and strictly diagonally dominant, and set B = cl, where ¢ < 0

satisfies
2

max; > p_; |aik|

lcf <

Show that the method converges.
Hint: Use the previous step and Gershgorin circle theorem to estimate the eigen-
values of the matrix BA.

3. Let U € R™" be orthogonal. Show that it can be written as the product of at most n
nontrivial (that is, non-identity) Householder reflections.

[I. Numerical Solutions of Nonlinear Equations



4. Let f : R — R be sufficiently smooth and such that there is a unique € € R for which
f(€) =0, f'(€) # 0.

To approximate & we consider the two-step Newton method

Yk = Xk ) Xkt1 =Y fe)
k — - 1 1 — Yk = 7y
f7(xk) N ' (vi)

Show that

(a) If the method converges, then

jm =& ")
k—00 (yk — E)(Xk - g) f’(g) .

(b) The convergence is cubic and

. X —
||m LE:

m =3[

[1l. Numerical Solutions of ODEs

5. Recall that all Runge-Kutta (RK) schemes are uniquely described by their Butcher

tableau
cl A

b7 -

A diagonally implicit RK (DIRK) scheme is one where A is lower triangular.
Derive all the second order, two-stage, DIRK schemes, such that

(a) The A matrix has positive diagonal entries:
elAe; > 0, i=1,2,

and {e,;}2_; is the canonical basis of R?.

(b) The second stage coincides with the solution at the next step:
ATe, = b.

Show that if, in addition, we wish that the diagonal entries coincide:
e]Ae; = elAe,

then the only possible scheme is the so-called Alexander scheme:

¥y v O 1
1 -y y=1—-—. (1)
11— v v2



6. To approximate the solution of the initial value problem
u'(t) =f(t,u), t>0; u(0) = up,

we apply the multistep scheme

3
whkt2 — w1 4 37 [F(tiso, wo2) + 3F (tesr, w ) + 3F (i, w5) + F(tier, w 1],

where, as usual, T > 0 is the (constant) timestep and tx = k7. Study the consistency
and stability of this scheme.

7. Investigate the A-stability of Alexander scheme (1).

IV. Numerical Solutions of PDEs
8. Let N € N. Define the meshsize h = 1/N > 0, the grid

Qh - {Jh}’jrv:o-
and the space of grid functions w;, : Q, — R as V(€;,). Define also
Vo Qh {WhEVQh ‘WhO)—Wh ):[]}_

For p € (1,00) the LP—norm on Vo(Q) is

1/p
|wh||Ln=(hZ|whoh ) |

Show that, if p < g, we have:

(a) Discrete embedding
[Walle < [[Whl| s

(b) Interpolation

Iwallg < llwall 67 llwall 52

9. Let L >0, a> 0, and ¢ > 0. Assume that f : (0,L) — R is given and sufficiently
smooth. Write a weak formulation of the problem

—au"(x) + cu(x) = f(x), xe€ (0, L), u(0) = u(L) = 0.

Find an approximate solution to this problem using Galerkin’s method over the space

[Tk \°
W = span < @x(x) = sin | — .
L k=1



10. Let 2 = (0,1), T > 0, and up : Q2 — R be given. To approximate the solution of the
heat equation

Ou(x,t) — 02 u(x,t) =0, (x,t)eQx(0,T),
u(0,t) = u(1,t) =0,
u(x,0) = up(x),

via finite differences, we introduce a space-time grid with space step h > 0 and time
step 7 > 0, and consider the so-called Richardson method: w® = w! = m,u, and

1
o G whh) — AWk =0, k=1,..., K.

Show that:
(a) The consistency error of the scheme is O(72 + h?).

(b) The method is unconditionally unstable in the L3°(L%) norm.

Hint: Recall that
in?2 X 1—cosx
2 2



Numerical Mathematics Preliminary Examination
Wednesday August 11, 2021

. Numerical Linear Algebra

. The purpose of this problem is to use the the spectral decomposition theorem to
prove the existence of the SVD. For this reason, you cannot invoke the SVD to
solve it. Let A € C™" with m > n.

(a) Show that both AA" and A”A are Hermitian and positive semi-definite. There-
fore, they admit the decompositions

AA" = USSTuU", AHA =VvSTsvH,

where U € C™ and V € C"™*" are unitary, and S € R™*" is diagonal and has
non-negative entries. Notice that this same S must appear in both decompo-
sitions.

(b) From the previous two decompositions, show that

A = USVH.

. Suppose that A € C™" is Hermitian with spectrum o(A) = {\;}7_; C R and the
associated orthonormal basis of eigenvectors S = {w;}?_;. Given € > 0, suppose
that x € C! is a unit vector (||x|l, = 1) satisfying

0 < |[|x —wgll, <e,
for some k € {1,...,n}. Prove that
[x"Ax — \i| < 20(A)e?,

where p(A) is the spectral radius of A.
Hint: If you can not prove this result, prove a simpler one.

. Let A =[a;;] € C™" be invertible and b € C". Prove that, if A is strictly diagonally
dominant, I.e.,

aiil > laiel . Vi=1,..., n,

ki
then for any starting value xq, the classical Jacobi iteration method for approximat-
Ing the solution to Ax = b Is convergent.

. Let A € C™" and b € C™, with m > n. Assume that rank(A) = n, and let
A = QR be a reduced QR factorization of A and A = UXV" be a sinqular value



decomposition (SVD) of A. Recall that the Moore-Penrose pseudoinverse of A is
defined by

AT = vziuf,
where > = diag(o7?, . . ., o 10,..., 0) € R™™ and r < nis the rank of A. Show
that x € C" is a least squares solution to Ax = b iff Rx = Qb iff x = Afb.

. Numerical Solutions of Nonlinear Equations

. Suppose that f € C!([a, b];R), and, for some £ € (a, b), f(£) = 0. Assume that

there are positive constants m, M € R, such that 0 < m < f'(x) < M, for all
x € [a, b]. To approximate the zero £, consider the following algorithm: given
Xg € [a, b], compute xq, X, ..., via

T g1 — x) +f(x) =0 k=012 ...,

where 7 # 0 is a parameter to be determined.
(a) Prove that there is one and only one zero in [a, b].

(b) Show that if 0 < 7 < 2/M the method converges, provided X is sufficiently
close to &.

(c) Show that the optimal value of T is given by 1 = mi—M and that, in this case,
we have the error estimate:

M —m

M+ m’

€ = x| < "€ — x|, q=

Numerical Solutions of ODEs

. Consider

u(t)="r(t,u(t)), t>0u(0)=up,

where f : [0, T] x R — R is continuous in its first variable and Lipschitz continuous
in its second variable.

(a) Prove that the forward Euler method converges.
(b) Prove that the backward Euler method converges.

Clearly indicate the smoothness assumptions you are using to prove convergence.
You may assume the appropriate local truncation error estimates without proof.

Show that the BDF3 method

18 9 2 6
k3 _ 2O k2 F ki1 4k O K
w 11W +11W 11W 115f(tk+3,w
satisfies the root condition and is of order 3. Conclude, therefore, that it must be
a convergent method. Use the boundary locus method to prove that BDF3 cannot

be A-stable.

+3)



V. Numerical Solutions of PDEs

8. A general linear explicit finite difference method for approximating a time-dependent
Cauchy problem can be written in the form
+1 _
Wit = D awl,
peP
where P is a finite subset of Z and a, are the weights, which depend upon the time

and space step sizes. We say that the method reproduces the constant state if,
whenever w” = 1, we obtain that w"t! =1,

(a) Show that if the method reproduces the constant state, then

Z ap, = 1.
peP
(b) A method is max-norm non-increasing iff |w"**| .« < [[wW"|| . A method is

positivity preserving iff whenever w;' > 0, for all £ € Z, then WZ”Jrl > 0, for all
£ € 7. Show that if a method reproduces the constant state and is max-norm
non-increasing, then the method is positivity preserving.
Hint: Suppose that wy' > 0 and wy = [[w"|[ .~ = a > 0, for some k € Z.
Now define a new variable n; := w; — a/2. Apply the method to 7", and use
the fact that —a/2 < 772’“ < a/2, for all £ € Z, to conclude the result.

(c) Show that, if a method reproduces the constant state and is max-norm non-
increasing, then a, > 0 for all p € P.

9. Consider the diffusion problem

Ur = Uy, O0<x<l, O0<t<T
u(0,t) = ¢olt), 0<t<T,
u(lt) = ¢u(t), 0<t<T,
u(x,0) = g(x), 0<x<,

where g(0) = ¢o(0) and g(1) = ¢1(0) for consistency. Define h = 15, 7 = L
=1z, x=4L-h ty=n-1, 9= 9g(x), ¢] = ¢i(t,), i = 0,1. The forward Euler
method for this problem is define as follows:

wyt =y b (wl —2w) +wyy), 1<e<m, 0<n<N-1,

with wi = @8, wl,, = @7, 0<n <N, and w) = g, 1 < £ < m. Suppose u €
C*([0,1] x [0, T]) and define u] = u(x, t,). Define ] == uf —w), 0<£L<m+1,
0<n<N,e"=]|e] .., e,’;]T, 0 < n< N. Suppose that u = ug < % Prove that

n < 2
onax el < Ch7,

where C > 0 is independent of h and 7. You may assume the appropriate estimate
of the local truncation error with proof.



NUMERICAL MATHEMATICS PRELIMINARY EXAMINATION:
AUGUST 2020

INSTRUCTIONS

Read each problem carefully. You must show your work to receive credit. If you believe a
problem has a typo, missing conditions, or can be interpreted in several ways, please clearly
indicate so in your work. In this case, fix the problem in a way that it does not become
trivial.

Please stay safe, wear a mask, and be mindful of social distancing.

1. NUMERICAL LINEAR ALGEBRA

1. The purpose of this problem is to provide a proof of existence of the SVD. For this reason,
you cannot use the SVD to solve it.
Let A € C™*™ with m > n.
a) Show that both AA* and A*A are Hermitian and positive semidefinite. Therefore they
admit the decompositions

AA* = USSTU*, AA=VXTRV*,

where U € C™™ and V € C™" are unitary and ¥ € R™*" is diagonal and has
nonnegative entries. Notice that this must be the same matrix in both decompositions.
b) From the previous two decompositions show that A = UXV*. Hint: Show that the
columns of U are eigenvectors of AA*.
2. Let A € C™"*". Recall that we say that A is strictly diagonally dominant of dominance
6> 0if
|ai,i|2(5+2|(lm‘|, Zzl,,n
J#
Let A be strictly diagonally dominant of dominance § > 0.
a) Show that A is nonsingular and that

A e <07
b) Show that if we apply Gaussian elimination without pivoting to
Ax = f,

then the procedure reaches completion without encountering any zero pivot elements.
c) Assume, in addition, that A € R"*". Show that all the entries of A~! are nonnegative.
3. Let A € C™*" with m > n be full rank, and let A = in be a reduced QR factorization
of A.
a) Show that P = QQ* is an orthogonal projection onto R(A), the range of A.
b) Let f € C™. Show that the vector x € C" is a least squares solution to Az = f iff
Az = Pf, where P is the orthogonal projection onto R(A).



4. Let A € R™™ be an SPD matrix with o(A) = {\;}}; and 0 < A\; < ... < \,. Denote by
P, the space of polynomials of degree at most k£ € N, that take the value 1 at zero, and

Py = {p € P : p(\,) = 0}
a) Show that the error in CG satisfies

|z — xpl|a < ||z — zo]|a inf  max  |p(7)].
pEPy, TE[ALAn-1]

b) From the previous item show that the error in CG satisfies

)\n - )\1 .
T—x < ||z — zgl|s—— inf max 7).
o= aulla < llo = ol il wax [p(7)

2. NUMERICAL SOLUTION OF NONLINEAR EQUATIONS

1. Consider the nonlinear equation e* = sin z.
a) Show that there is a solution x, € (—=5/4m, —).
b) Consider the following iterative methods:

Ty = Insin(zy), Tpy1 = arcsin e™*.

What can you say about the local convergence of these methods? About their conver-
gence order?

c¢) Provide a method that converges quadratically to z.. You may invoke a Theorem, but
you must precisely state it and verify its conditions.

3. NUMERICAL SOLUTION OF ODES

1. Consider the RK methods given by the tables

5
i

1
i

4 1

a) Show that these methods satisfy all necessary order conditions to be of order at least
two.

b) Show one of these methods is a collocation method, while the other one is not. For

the collocation method find its order of consistency.
2. Show that the explicit multistep method

W+ T + o + agw® = s[Baf (trra, W) 4 Buf (ter, W) + Bo f (tr, w")]
for approximating the solution to the initial value problem
W'(t) = f(t,u(t)), w(0)=mu

is fourth order only if ay + as = 8 and a; = —9. Prove that this method cannot be both
fourth order and convergent.



4. NUMERICAL SOLUTION OF PDESs

1. Let G, be a uniform grid, of spacing h, of the unit square (0,1)? and let V,, denote the
space of grid functions that vanish on the boundary of (0,1)?. Recall that the discrete
(finite difference) Laplacian is defined on V), via

Wi—1j + Wit1j + W1+ w1 — 4w ;

(Apw)i; = 72 ;

where (ih, jh) € G, are in the interior.
We say that a function w € V}, is discrete subharmonic if

Ahw 2 0.

Show that a discrete subharmonic function attains its maximum at the boundary.
2. Let a,b € R, b—a={>0. Given a function w € C([a,b]) define W € P; by:

W(a) = wla), /abW(x)dx _ /abw(x)dx.

show that there is a constant, independent of ¢, such that for every w with w” € L?(a,b)
we have
||U} — W||L2(a,b) S OEQH’(UNHIQ(QJ,).
Hint: Recall that, by passing through the Taylor polynomial, one must only check two
conditions.
3. Find the values of 6 for which the #-method for the discretization of the heat equation on
a bounded interval is unconditionally stable in L°(L3?).
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1. Numerical Linear Algebra

1. Let U € C™" be unitary, i.e., U? = U~?, where U” denotes the conjugate transpose of U.
Recall that a Householder reflector is a matrix of the form
H
vv
H=1,- 2W ,

where v € C" :=C"\ {0}. Prove that

U = H1 s HtD,
for some £ € {1,---,n— 1}, where H; is a Householder matrix for each i € {1,--- , £},
and D is a diagonal matrix whose diagonal entries each have modulus 1. (If you cannot

prove this, perhaps you can prove the following, slightly simpler result: If U is real and
orthogonal, then it is the product of at most n (real) Householder matrices.)

2. Let A€ R™" and b € R™ with m > n. We say that z € R" is a.least squares solution to
lle f— b’l iff
z € argmin {||Ax — b|5 | x € R"} .
Assume that rank(A) = n. Prove that z € IR” solves the least squares problem iff it solves

the normal equation
ATAz =ATb.

Argue that the solution z € R"” must be unique.

3. Suppose A € C™" is Hermitian and that the spectrum of A is denoted o(A) = {A;,..., A} C

R. Let S = {w, ..., w,} be an orthonormal basis of eigenvectors of A, with Aw, = A Wy,
for k=1,...,n. The Rayleigh quotient of x € C is defined as :
xHAx
R(x) := v

Suppose that for some k, |[w — wy||, < €, where |lw]], = 1. Show that

[R(w) — Ai| < 2p(A)e?.
(If you cannot prove this, perhaps you can show the somewhat simpler result: ||w — wy||, =
O(e) and [lw]l, = 1 implies |[R(w) — A¢| = O(€?).)

4. Let A € C™" be Hermitian positive definite (HPD), represented as

_[a p
A_[p ﬂ]'



where a is a scalar, p € C™1, and A € C(-Dx(=1)_ After 1 step of Gaussian elimination
(without pivoting), A will be reduced to the matrix

a pY

0 B |’
where B € C"-)x("-1)  Prove that B is HPD. In so doing, also prove that the corre-
sponding diagonal elements of B are smaller than those of A.

2. Numerical Solution of Nonlinear Equations

. Suppose that f : [a,b] = R and, for some £ € [a, b], f(§) = 0. Assume further that
f € C?[a,b), and f' and f" are strictly positive on the interval [a, b]. Prove that, for
any starting value x € (&, b], the sequence {x,} defined by Newton's method converges
quadratically to the root £ as kK — oo.

3. Numerical Solution of ODEs
. Find all of the values of a and 8 so that the 3-step method
- k3 + o_;('wk+2 _ Wk+1) —wk= sB [f(tk+2, W.k+2) + f(tk+1. Wk+1)]

is of order 4. Show that the resulting method does not satisfy the root condition and is,
therefore, not convergent. Is the scheme A-stable? (Why or why not?)

4. Numerical Solution of PDEs
. Suppose that u: [0, 1] x [0, T] = R is a solution to the diffusion problem,

Ot = Oy, 0<x<1,0<t<T
u(0,t) = ¢o(t), 0<t<T,
u(1,t) = ¢a(t), 0<t<T,
u(x, 0) = g(x), 0<x<1.

Let m, N € N be given, and define h:= -1z, s :=F, p:=7% x=£-h t,=n-s. The
backward Euler scheme for the diffusion problem is defined as follows:

Wit =wi +p (Wi 2wt W), 1<e<m, 0<n<N-1,

with wf = ¢, Wi, =¢7,. 0<n< N,and w) =g, 1 < £ < m. Suppose u €
C*4([0, 1] x [0, T]) and define uf = u(x, t,) and €] ;= uj—w;, 0<€<m+1,0<n<N,
e"=[ef,...,e"", 0< n< N. Prove that

n < 2
Jnax, el < C(h* +5),

where C > 0 is independent of h and s. (You may assume the appropriate form of the
local truncation error, that is, the order of the method, without proof.)



2. The Lax-Friedrichs scheme for the linear advection equation 8;u + ad,u = 0 may be
expressed as . )
W;H = 5(1 +u)w; + 5(1 - I-L)Wz'.,un
where u = 2%, 2 > 0, s > 0 is the time step size, and h > 0 is the space step size. Use
the von Neumann stability analysis to show that the scheme is stable provided the CFL
condition

O<p= ? <1
holds.
3. Suppose that u € C*([0, 1]) is the solution to the one dimensional Poisson problem
d?u .
—aE = f in. Q=(0,1), u(0) = go; u(l) = g,

and w is the finite difference approximation satisfying
—Apwi=f(p)=:F, i€{l,--- ., m}, Wo=go; Wm1 =0,
where h = =1+, p;=i- h. Define & := u(p;) — w;, i € {0,--- , m+ 1}. Prove that
llello,n < CH2,
where C > 0 is independent of h and

m
lelly.s = 4| B leil?.
i=1
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1. NUMERICAL LINEAR ALGEBRA
. Let A € C**™ have an SVD A = UXV*. Find an eigenvalue decomposition of the matrix

0 A*

A 0
. Let A € R**® be symmetric. Suppose that A € o(A) has multiplicity one and
inf{{A—p|l:pea(A)\{N\}}=d>0.

a) Let § € R be such that
d

Show that (A — 61)~! exists and that, if u € o(A), then (u —6)~! € o ((A—6I)1)

with the same eigenvector.
b) Let w) € R™ be the eigenvector of A associated with A, and let vy € R” be such that

[lwollez = 1, and (wp, wy)e2 # 0. Consider the following inverse power iteration scheme:

Gori = (A= OD)Mu, gy = —HH_
TCerille

Show that there is a sequence {ei}ren With &x € {—1,1}, such that vy — wy as

k — oo. :
. Let V be a vector space with scalar product (-,-), and let A, B € L(V) be positive and

self-adjoint with respect to the given scalar product (think of V' = C™ and A, B being

HPD matrices).
a) Introduce the so—called energy norm of B:

lzlz = (Bz,z), VzeV.

Show that this is indeed a norm. Show that this norm comes from an inner product.

Call this inner product (-,-)s.
b) For C € L(V), let kg(C) be the condition number of C in the energy norm of B.

Assume that there are constants v, 7, > 0 such that
71 (Bz, z) < (Az,2) < 72(Bz,x), VEeEV.

Show that

ks(B-1A) < 2.
05!

. Assume we approximate the solution to a linear system of equations via the linear, sta-
tionary scheme

(1) Ty = Tax + .

YL
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‘In this problem we will study an acceleration procedure known as ertrapolation. The
scheme (1) can be embedded in a one-parameter family of methods:

2) Zpp1 = Y(Tzi +¢) + (1 — Yz = T2 + 76,

with T, ~T + (1 —~)I, for some 7y > 0.

a) Show that any fixed point of (2) is a fixed point of (1).

b) Assume that we know that ¢(T) C [a,b]. Show that o(T, C[ya+1—7,7b+1—1]
c) Show that

AT < mex|yA+1-9]=¢

d) Show that if 1 ¢ [a, b] then the choice v* = 2/(2 — @ — b) minimizes g, and that, in

this case,
oy =1-7"d,

where d is the distance between 1 and [a, b]. This shows that, using extrapolation, we
can turn a non—convergent scheme into a convergent one.

e) Consider Richardson method with ¢ =1 and A = A* > 0. If 0(A) C [m, M], show
that choosing v = 2/(m + M) we obtain

M-m

M +m’

thus Richardson method with extrapolation converges.

Oy =

2. NUMERICAL SOLUTION OF NONLINEAR EQUATIONS

1. The purpose of this problem is to construct root finding iterative schemes that have order
p=2and p =3. Assume that f : R — R has a simple root x € R, that is f(x) = 0.
Assume also that f(z) = 0 can be rewritten as = (), for some p. We consider the
iterative scheme:

Trs1 = P(Tk).
a) Define the error ¢ = x — «. Show that

er = ¢'(x)er—1 + O(lex-1[?).

b) Assume that the method converges. Show that if ¢/(z) # 0 and ¢” is bounded, then
the method converges linearly.
c) Assume that the method converges. Show that if ¢/(x) = 0 but ¢”(z) # 0 the method

converges quadratically.
d) Define
P(z) = = + a1(2) f () + a(z)[f (=)]*.
Find conditions so that = ¢(z) iff f(z) =0.
e) Evaluate the first and second derivative of ¢ w.r.t. . From them show that if p = 2
(the method converges quadratically) then we obtain Newton’s method.

f) Show that if p =3

N @)
R R )
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3. NUMERICAL SOLUTION oF ODEs

1. Consider the two-step method
Yn+2 = Yn = 2hf (tn11, Ynt1)-

This is usually called the explicit midpoint rule.
a) Study the order, stability and convergence of this method.
b) Find the linear stability domain of this method.

4. NUMERICAL SOLUTION OF PDEs
1. Let = (0,1) and Q3 be a uniform mesh on Q with size h. Let U, be the space of mesh
functions such that w,(0) = 'wh(l)°= 0. Denote by ¢ and 4, respectively, the forward and

backward difference operators on Up,.
a) Show the following discrete embedding: There is a constant C > 0 independent of h

such that, for all wy, in Z:{h, we have
llwallzg@a) < Clldwnllzz @n)-
b) Show the following discrete Poincaré inequality: There is C > 0 independent of h such
that, for all wy € U, _
lwallz2@n) < C||5wh||L,=,(n,.)-
c) Show the following summation by parts formula:
—(6’0;;, 'l.Uh)Li(gh) = (’U};, $Wh)L§(Qh), V’Uh, wp € L?h.

d) Consider the problem: Find up € Z);, such that
—55’&;; = fh.
Prove the following a priori estimate
llunllzeo@ny < Cllfall 2204)-
2. Let V), be a finite element space consisting of piecewise linears over a mesh of size h.
Define the Lagrange interpolant I, : C([0,1]) — V} by
Inw(r) = wlz),
where {} are the nodes of the mesh. Show that, if K = [k, Z441] is any subinterval,
there is a constant, independent of K and h such that, if v € C([0, 1]) and it satisfies
v" € L*(K), then
1w = vY llz2qz) < ChIV" |agxo-
3. Prove the following discrete mazimum principle: Let 2 C R be a bounded interval and
I = (0,T]. Consider a spatial mesh of size h and a temporal one of size 7. Denote by

d: the forward differencing operator in the ¢ variable and by J, and &, the forward and
backward, respectively, difference operators in the z variable. Show that if A = 7/A? < %

and _
JtU; - 6x63;U;" S 0,

for all (z;,%.) € 2 x I, then the mesh function U = {U}'} attains its maximum at the
discrete parabolic boundary, i.e. at the collection of points

Iy ={(2;,0) € @ x {0}}U{(0, %) : k < n}U{{(1, %) : k < n}
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1. Numerical Linear Algebra
1.1. A matrix A € C**" is called strictly diagonally dominant (SDD) iff

n
lasil > ) laikl, Vi=1,...,n.

k=1
k#i

a. Let A € C**™ be SDD, represented as
-3 1)
p A

where « is a scalar, p,q € C*!, and A € C~Dx(n=1)_ After 1 step of Gaussian
elimination (without pivoting), A will be reduced to the matrix

a qf
0 B ?
where B € C(»=Ux(n=1)  Prove that B is SDD.

b. Prove that, if A is SDD, then A is invertible.
1.2. Let A = B + P € C™** be invertible. To approximate the solution of Ax = f, starting

from an arbitrary xo € C", we apply the following iterative scheme (where we are
implicitly assuming that B is invertible)

Bxk+1 + ka =f.
Show that this iterative scheme is convergent if and only if all the roots of
det(xkB +P) =

are of modulus strictly less than one. Use this to show that if A is HPD, then Gauss-

Seidel method converges.
Hint: You may use without proof that if M is skew Hermitian, then for every w € C»

we have
R (wMw) =0,
where Rz denotes the real part of 2.
1.3. Let A € R™" be symmetric positive definite (SPD). Suppose P € R**™, m < n, is full

rank.

a. Show that Ag := PTAP is invertible.

b. Define Qa := PAZ'PTA. Show that Qau € R(P) is the best approximation of u € R®
with respect to the A-norm, || - |5, which is defined as follows:

(v,w)a :=vIiAw, Vv,weRY |w],:=+(w,w)a, VweR"
In other words, prove that A
Qau = argmin {||z — u|; | z € R(P)}.



1.4.

2.1.

3.1

3.2.

Let A € R™*" be symmetric. Suppose the spectrum, denoted o(A) = {A1,..., A} CR,
has the following ordering

|>\1| 22 I)‘r—ll > I’\rl > l)‘r+1| 22 I’\n| 2 0.

Let S = {wi,...,W,} be an orthonormal basis of eigenvectors of A, with Aw;, = AW,
for k =1,...,n. Suppose that § € R\ o(A) is given and |\, — 8| < |\ — 6, for all
k # r. The inverse iteration is as follows: given vo, with [|vo|l, = 1 and ¢, := wlvo # 0,
define, for all m > 0,
(A—0)" v,
Vm4l '= 1 .
[(A =)™ v,

Prove that s, Vy, — Wy, as m — 0o, where {sp,}o_; C {-1,1}.

2. Numerical Solution of Nonlinear Equations

Suppose that f : R — R and, for some £ € R, f(¢) = 0. Assume that, for some § > 0,
f € C?(I5), where I5 = [€—6,&+6)], and f'(€) # 0 and f"(€) # 0. If |{—=zo| is sufficiently
small, prove that the sequence {z;} defined by Steffensen’s method,
f(zx) o = [z + f(ze)) — flxx)
’ k= )
Sk f(zx)

converges quadratically to the root £ as k — oo.

Tk+1 =T —

3. Numerical Solution of ODEs

Suppose that T > 0, M € N, s = T/M, and u € CP*([0,T]) satisfies the IVP ' =
f(t,u), for t € [0,T], with u(0) = uo. Suppose that u is approximated by the linear
g-step method

q q
Z ajwk+j =8 Z bjf(tk+j: wk+j)a

Jj=0 j=0
and define
Ce = 2 ] = . .
j=0 \'d% ~ (=1 .'i) if £€{1,2,3,---}
Show that the scheme is exactly order p iff Co =0=C, = --- = G, but Cpy; # 0.

a. Prove that no explicit Runga-Kutta method can be A-stable.
b. Consider the implicit Runge-Kutta method given by the tableaux

5 1

171

1
3
1] 3 1
1 1

Prove that this method is A-stable.



4.1.

4.2.

4. Numerical Solution of PDEs
Suppose that » € C4([0, 1]) is the solution to the one dimensional Poisson problem

_Z_i%=f n Q=(0,1), u(0)=u(l)=0.

Suppose m € N, b = L5, z; = i+ h and w is the finite difference approximation
satisfying

_ Wioy — 2w+ Wi fl@) = f, i=1-,m
h2 - (3 e (3] - b} ) )
with wy = Wmy1 = 0. Define e; := u(z;) — w;, 2 =1, -+ ,m, and prove that

m
Y lel? < CH?,
i=1
for some constant C > 0 that is independent of h. You may assume the correct form

(order) of the local truncation error estimate without proof.
Consider the diffusion problem

lellz =

Oyu = Oy, O<a:<1,0<t§T
u(0,t) = ¢0(t)a 0<t<T,
u(L,?) = ¢1(t), 0<t<T,
u(z,0) = g(z), 0<z<1,

where g(0) = ¢(0) and g(1) = ¢,(0) for consistency. Define h = m+H, s=% p=1%,
Te=1L-h, t, =n-8, ge = g(ze), " = ¢i(tn), ¢ = 0,1. The forward Euler scheme for this
problem is defined as follows:
wpt = wf 4+ p(wp, — 2wy +uwpy,), 1<€<m, 0<n<N-1,
with wd = ¢2, wi ., =¢7,0<n <N, and w§ =g, 1 <L <m.
a. Suppose u € C4([0,1] X [0,T]) and define uj = u(z¢,t,). Prove that
upt! = uf +p (up, — 2uf +upy) +s77, 1<€<m, 0<n<N-1,
where
|73 < Cyzh® + Caps

and Cjy 4, C:2 > 0 are independent of 4 and s.
b. Define € :=uf —w}, 0<£<m+1,0<n< N, e" =[e},...,ex]",0<n < N.

Suppose that u = po < 3. Prove that

n 2
o2ax [le”llo, < O,

where C > 0 is independent of A and s.



NUMERICAL MATHEMATICS PRELIMINARY EXAMINATION.
AUGUST 2016

1. NUMERICAL LINEAR ALGEBRA

. Let A € C**" be a normal matrix, with spectrum o(A) = {A1,...,A\,}. Let A=QR be a
QR factorization of A. Prove that

zin Pl < frigl < max A
foralli=1,...,n, where ry; = [R], ..
. Suppose that A = [a;;] € C**" is strictly column-wise diagonally dominant, i.e.,

lakel > D lajxl.
J#k
(a) Prove that Gaussian elimination can be preformed to row reduce A without the need
for pivoting.
(b) Can you conclude from part (a) that the matrix is invertible? Why or why not?
. Let A € C**"® be hermitian positive definite (HPD). To solve the system of equations

Ax = b, with b € C" consider the iterative scheme
BM +Axe=b, k=0,1,--,

with 7 > 0 and B also HPD. Show that, if B — ZA is HPD, then we have efAe; — 0 as
k — oo, where e := x — x;. Why does this imply convergence?

Hint: a = 3(a+b) — (b —a).

. Let A € R™*" be symmetric positive definite (SPD) and 0 # f € R" be given. To solve
the system Ax = f, we employ the conjugate gradient (CG) method, starting from the

initial guess x9 = 0.
(a) Suppose that A has only two eigenvalues, 0 < A\; < ). Prove that, for every A €

(A1 A2)
lesl < aDllenli, a3 = et - 3|
(b) Prove that
';' (A1 + X2) = argminye s, ) 9(A)-

Hint: max{|al, |b|} = }|a +b| + 1|a — b.
(c) Use the last fact to show that

% = Lol
f€2+1 ©lla,

where K2 is the spectral condition number of A.

llerlla <



2. NUMERICAL SOLUTION OF NONLINEAR EQUATIONS

. Let f € C?(R) and assume that for all z € R
fl(z)>0, f"(z)>0.

(a) Give an example of a function that satisfies these conditions but has no roots.

(b) If the function f has roots, how many can it have?

(c) Assume that f has aroot z,. To approximate it we employ Newton’s method, starting
from an initial guess z¢. Show that if zg > z, then 2o > z; > -+ > 2 > T4y > z,,
forall & > 1. :

(d) Use the last step to show that the method converges.

3. NUMERICAL SOLUTION OF ODES

. Show that, if z € C \ {0} is on the boundary of the linear stability domain of the BDF2

method . . 0
2*+2 — _B_xk+1 + _§$k == hf (terz, 25F2),
then R(z) > 0. Deduce from this that the method is A-stable.

. Find the range of a € R for which the method

72+ (a — 1)p**! —an* = g ((a + 3)f (trs2rn**?) + (3a + 1) f(te,n%))

y(0) = 1 and solve exactly the resulting difference equation, considering the starting values
to be 7° = ' = 1. Show theoretically that the numerical solution does not converge as

h—+v0andn—>oo.

4. NUMERICAL SOLUTION OF PDEs

. Suppose that u satisfies
—u" +g(z)u = f(z), £ €(0,1), wuis l-periodic,

where g and f are smooth periodic functions and g(z) > go > 0, for all z € R.
(a) Over a uniform mesh of size h construct a finite difference scheme that is second
order consistent. (You don’t need to prove the order of the local truncation error.)

(b) Prove the following £ stability result:
1
llwllese < —[I]lee.
(1

where w is the periodic grid function approximating u.
Hint: Consider the approximation scheme at the maximum and minimum values of

the grid function w.
. Consider the boundary value problem
—u' = f(z), z € (0,1), u(0) = u(1) =0.

Given N € N we construct a mesh with nodes z; = ¢/N with ¢ = 0,..., N. Further, as-
sume that f, restricted to the interval (z;, ;1] is constant. Show that the standard finite



element scheme with piecewise linear basis functions coincides with the finite difference

scheme Ui+1 2Uz‘ + Uz'—l 1
_ 7 = 5(‘I;n-1/2 + Fu+l/2)’

where h = 1/N and Fit'/2 is the value of f on the interval (z;, zi+1].

. Suppose that » : [0,1] x [0,7] — R is a smooth solution to the linear transport equation

u; + au; = 0 in (0,1) x (0,7T), with periodic boundary conditions, u(0,t) = u(1,t), for all

t € [0,T), and smooth, periodic initial data u(-,0) = g. Suppose that v is approximated
by the upwind scheme, with time step size s = T'/N, and space step size h = 1/M, where

M and N are positive integers.

(a) Prove that, under the appropriate CFL condition — which you must state ~ the scheme
is stable in the norm || - [|¢e.

(b) Prove that, under the same CFL condition, the scheme is convergent in the norm
| - lleso, .e., for any integer n, 0 < » < N, there is a constant C > 0, which is
independent of s and h, such that

le™|lee < C - T(s + h),

where e” is the error grid function. (You may assume the appropriate form of the
local truncation error without proof.)




NUMERICAL MATHEMATICS PRELIMINARY EXAMINATION:
JANUARY 2016

1. NUMERICAL LINEAR ALGEBRA
. For A = [ay]7;_; € R™™ define
M(A) =n- max |a;|.

1<i,j<n

(i) Though it is not a matriz norm, show that M(-) is a vector norm over the linear
space R™*".

(ii) Show that for p € {1,2, 00} the following inequalities hold:
1
2 M(4) < 114l < M(4).

. Suppose that A € R™*" has the property that

n
@i > ) oy, ay <0, 1#].
i
Show that, in this case A~ exists and contains only non-negative elements. Hint: Recall

the procedure to invert a matrix using Gaussian elimination.
. Suppose A € R™*". To obtain the solution of Az = f we apply the Gauss-Seidel method
and obtain a sequence {z}r>o of approximate solutions. Assume that the matrix A is

such that there is ¢ € (0, 1) for which

glas| > Zlaul

J#i
Show that the.following error estimate holds:. .
|z — zrlloo < qk"x — Zo)|oo-
. Suppose A € R*™*" and A = AT. For simplicity, assume that the elgenvalues of A are
ordered as follows :
| - 0<|,\11<|,\2|< - < |An)-
Assume that A, a.nd its correspondmg eigenvalue ¢,, are known. Show that if

(x ,‘Pn) # 0) x = Ax H yk+1 = xk - Anx 3

then
A . 2k)

/\n—l

k+1
T = tO (



2. NUMERICAL SOLUTION OF NONLINEAR EQUATIONS

1. By B(z,y,r) C R? denote the open ball of radius r > 0 centered at (z,y). Suppose that
for some r > 0, f,g : B(Zs, ¥, 7) — R are nonlinear, twice continuously differentiable

functions with
f(x*’ y*) = O) g(-’E*, y*) =0.

Consider the Gauss-Seidel-like iterative scheme: given (z*,y*) € B(z,, 3., 1), find (z*+1,y*+!) €

R? such that
f(:z:k"'l,yk) =0, g(a:k+l, yk+1) =0.

(i) Establish an iteration error equation of the form

’ fz (%, y*)e:-'-l + fy(x*) y*)es = Rk+1
92T, yu)eET! + 9y (s, y*)e:j“ ’

where ef := z, — z* and ef =y, — ¥*, giving a precise expression for the ‘remainder’

term, RA+L.
(ii) Using problem 1.3 as a guide, give sufficient conditions for the convergence of the

scheme.

3. NUMERICAL SOLUTION OF ODEs
Consider the solution of the initial value problem
Z'(t) = f(t,z(8),  z(0) = zo.

The following two questions are about the linear multistep method

k k
Z QjTn ki =h Z bjSfn—k+5)

J=0 j=0
where f; = f(¢- h,z,) and h > 0 is the step size.
1. Define
k ko rii §i-1
%:;ai d,:;(?a,—'(]—_-l—)'b,) ]21
Show that dy = - - - = dy, = 0 if and only if the local order of truncation of the method is

m. : .
2. Recall that, to the linear multistep method, we can also associate the polynomials

k k|
p2) =) a2, qz)=) b2,
j=0 i=0

Show that Milne’s method, for which
1

1 4
=72 — =—-z22 4= -
p(z) = 2° — 1, q(2) 3z + 3z+ 3

is (root) stable, consistent, and convergent.



4. NUMERICAL SOLUTION OF PDEs

1. Consider the two-point boundary value problem
' —u" = fin (0,1), u(0)=u(l)=0.
Suppose that the solution u is approximated via the finite element method using a uniform
mesh, of mesh size h, and a finite element space composed of piecewise linear functions.
(i) Denoting the finite element approximation by u;, prove the fundamental Galerkin
orthogonality: fol (up — u)'v} dz = 0, for all v, in the piece-wise linear finite element
space.
(ii) Using (i), show that the method is ezact at the nodes zi of the mesh, that is,
up(zk) = u(z).
2. Consider the Lax Friedrichs scheme,
1 7 as
w?+1 = § (wg—l + wg+1) - 5 (w?+1 - w?—l) y BT T:
for approximating solutions to the Cauchy problem for the advection equation 2 + o =
0, where a > 0. Here h > 0 is the space step size, and s > 0 is the time step size.
(2) Prove that, if s = C1h, where C; is a fixed positive constant, then the local truncation
error, 7;*, satisfies the estimate
'l < Co(s+h),
where Cp > 0 is a constant independent of s and h.
(b) Use the von Neumann analysis to show that the Lax-Friedrichs scheme is stable
provided the CFL condition

O<u=a—h§51

holds.



Computational Mathematics Preliminary Exam
August 12, 2015

There are 9 problems, some with parts. Complete as many problems or parts of problems as possible.
Good luck!

1. Let B be a singular symmetric matrix with || B||2 = 1. Given € > 0, construct an invertible matrix
A such that |A — Bl|2 < € and determine an upper or lower bound on k3(A) that depends on «.

2. Let A be an n X n symmetric and positive definite matrix with Cholesky factorization A = LLT.
Let I, be the n X n identity, & > 0 and construct the 2n x 2n block matrix

[ A al,
B= ( ol, A ) '
Under what condition(s) on a is B positive definite?
Under those conditions, determine B's Cholesky Factorization.
3. Let A; and A, be n x n real matrices with A; invertible, and b; and b, be n-vectors. Consider
the following iterative method: Given (z°,¢°), for k =0,1,2,...

A1$k+l = b1+A2yk
Alyk+l = bz-AgJ?k.

If this method converges, what does (z*, y*) converge to?
Under what condition(s) on A;, Aj, b and by, does this method converge for any choice of
(z°,5°)?

4. Let f : R = R be twice continuously differentiable. Suppose f(z*) = 0 and f'(z*) > 0. Show
that there's an € > 0 such that if |29 — 2*| < € then the following iteration converges to z*:

f(zk)

T+l = Tk — 7(@m)’
m

where m < k is chosen such that |f'(zn,)| = max;<k | f'(z;)|.

5. Let A be an n X n symmetric matrix and A its largest eigenvalue with corresponding eigenvector
v. Assume no other eigenvalue of A has the same magnitude as A.
Let z° = v + éu for some small scalar § and a non-zero vector u with vTu = 0, and consider the
following iterative scheme for £k =0,1,2,...:

yk+1 = AzF
k+1 .0
= ¥y -z
Hk+1 e
A Tan
llg*+2 |2

Under what condition(s) does p;. converges to A\?

1



6. For 0 < 6 < 1, an ODE solver is §-damping if when the method is applied to solve y = Ay,
[¥nt1] < Slyn| for all n as Ah — —oo0.

Show that implicit trapezoid method

Yn+1 = (f(tm Yn) + f(tn+11 yn+l))

is A-stable but that it is not 4-damping.
7. Consider the general s-step Backward Differentiation Formula (BDF) for solving the ODE 3 =
ftv):

Z xYnik = hBf (tntss Ynts)-
k=0

Determine coefficients for a 2-step method that is at least 2nd order.

For this method, determine whether is A-stable or not.
8. Consider the solution of
-u’(z) = f(z), 0<z<l1, u(0) =u(l) =

via the scheme 1
_2(U‘—1 =2Uj+Ujp) = f(z5), J=1,...,m,

where h = +1, z; = jh, and U; is our approximation to the solution u(z;) (so Up = U4 = 0).

Show that this scheme is convergent in the 2-norm.

9. Consider the Lax-Wendroff scheme
a?k?
2h2

ak

Uyt =Up + (U" —2U; + e+1) 2h( 1~ Ue—)

for approximating the solution of the Cauchy problem for the advection equation 3 ou 4 a-;,; =0,
0 <t < T where a > 0. We have k = %, h is the spacing for the grid {z¢}, and U} is the

approximation of u(nk, z,).
Use Von Neumann's method to show that the Lax-Wendroff scheme is stable provided the CFL

condition
ak

=<
b 1

is enforced.



NUMERICAL MATHEMATICS PRELIMINARY EXAMINATION.
MONDAY AUGUST 11, 2014

1. NUMERICAL LINEAR ALGEBRA

(1) Let A; € R™*® with ¢ = 1,2 be two SPD matrices that commute, that is A4;4; =

Az4;. Define A = A; + Ay. To solve the linear system of equations Az = f consider
the following iterative scheme:

k+1/2 _ ok
(I +7A)T——=+ Az* = f,

k1 _ ph+1/2
gkl — g
I+ 7h)——F+ Az = f,

where 7 > 0 is a user defined parameter.
(a) Write this scheme in the form

(L‘k+1

k
B_a +Az"=f

and clearly identify the value of o and the iterator B. Hint: Try adding and
subtracting the steps.

(b) Is B invertible? Justify your answer.

(c) From this expression find the equation that controls the error ef = z — z*,

(d) Show that with the given assumptions [z, y] = (4,422, y) is an inner product.

(e) Show that for every 7 > 0 the sequence y**/2 = (z**! + 2¥) converges to

z. Hint: Take the inner product of the equation that controls the error with
ek + e* and add over k.

(2) Show that for every z € R*
lzlleo < llzllz < Vnlz|co-

Use these identities to show that for any A € R™*"

1
—=llAllz < |4l < VnllA|l2
n

and that, if A is nonsingular,

S <
n

(3) A projector is a square matrix P that is idempotent, that is P2 = P. An orthogonal
projector is one that satisfies P = P*. Show that:

(a) If P is an orthogonal projector then I — 2P is unitary.

(b) If P is a projector and P # 0 then ||P||; > 1 with equality if P is an orthogonal
projector.



2. NUMERICAL SOLUTION OF NONLINEAR EQUATIONS

(4) Consider the following relaxation method for the solution of f(z) = 0:

k+1 _ .k
2T =0

Assume that 0 < m < f'(z) < M. Provide sufficient conditions on « for convergence.

3. NUMERICAL SoLUTION oF ODEs

(5) Show that there is no two stage third order explicit Runge-Kutta scheme.
(6) To approximate the solution to y'(t) = f(t,y(t)) we use the following multistep

method

1
Ta7, (259" —48y" + 36y" ! — 16y"% + 3y %) = fH.

Determine its order. Is it A-stable?
4. NUMERICAL SOLUTION OF PDEs

(7) Consider the boundary value problem
—(a(z)v) + e(z)u= f in (0,1) u(0)=1u(1l)=0.
Develop a finite difference approximation of order O(hz)_. You must show that this
is indeed the order of the scheme. Notice that the coefficients are variable.
(8) Consider the Dufort-Frankel scheme

1 n n— 1 n Frn n Frn 1 n n—
E(Uj H-Ur) = Eg'( i — 207 + ULy), Ui = §(Uj 4+ Ur)

to approximate the heat equation. Show that if u = % tends to zero, then this
scheme is consistent. If, instead, u is constant, then the scheme is consistent with
the equation
2P+ Us — Ugy = 0.
(9) A general linear explicit finite difference scheme can be written in the form

Uptt = Z 4 Usep:
peEP
where P is a finite subset of Z. We say that the scheme reproduces the constant state
if, whenever U™ = 1, we obtain that U"*! = 1.

(a) Show that if the scheme reproduces the constant state, then 5 a, = 1.

(b) A scheme is max-norm preserving if ||U"+!| e < [JU™(|10. Show that if a scheme
reproduces the constant state and is max-norm preserving, then a, > 0 for all
peEP.

(c) Assume that this scheme is used to approximate the transport equation u;+u, =
0 with initial data u(z,0) = e**. Find an expression for the error in the L2-norm
after one step that depends only on the coefficients {a,}pep, the mesh size h and
the ratio u = 7/h.

Notation: For a mesh function U the L and L norms are given by

”U”ig = hz U;12, Ul = m?x{IU,-l}.
J



N UMERICAL MATHEMATICS PRELIMINARY EXAMINATION
FRIDAY JANUARY 3, 2014

NAME:

I. Numerical Linear Algebra

1. Let A € C™*™ with rank(A) = r. If A has the SVD A = UXV"*, the Moore-Penrose
pseudoinverse of A is defined by

At = vty

where Tt = diag{o7?,...,07 .,0} € R**™, Show the following:
(a) If A! exists, then Af A‘
(b) If A has full rank, then At = (4*A4)714".
(c) AATA= A.
(d) ATAAT = At
. 2. Let A € C™™ and let a; be its j-th column. Prove Hadamard’s inequality

| det(A)| < T llasllz-

j=1

3. Suppose A, B € C™*™ are Hermitian positive definite. Assume there are constants
7,72 > 0 such that, for all z € C™,

mz*Bzx < z*Az < y.2*Bx.

Consider the so-called energy norm with respsect to B:

|z|%3 = z*Bz, Vz e C™

Show that
kB (B _IA) < ﬁ:
;!

where by kg we denote the condition number with respect to the subordinate matrix
norm generated by the energy norm.

4. Let A € R™*" matrix and b € R". Given a linear system Az = b, consider the
following iterative method:

Tr4+1 = Tk + QT

where r; := b — Az is the residual, zo # A~'b is arbitrary, and « is a scalar
parameter to be determined.



(a) Show that if all the eigenvalues of A have positive real part, then there will
be some real o such that the method converge for any starting vector zo.

(b) Show that if some eigenvalues of A have negative real part and some have
positive real part, then there is no real a for which the iterations converge.

II. Numerical Solutions of Nonlinear Equations

5. Consider the nonlinear equation e* = sinz.
(2) Show that there is a solution z. € (—3m, —7).

(b) Consider the following iterative methods: (1): Zx41 = In(sinzy) and (2)
Tr41 = arcsin(e®). What can you say about the local convergence of each of
these methods for z, as in (a), and their convergence order?

(c) For z, as in (a), please give a method which is quadratically convergent.
Justify why this method is quadratically convergent (you can use a theorem
here, but you need to give precisely the condition in that theorem).

III. Numerical Solutions of ODEs

6. (a) Outline the derivation of (explicit) Adams-Bashforth methods for the numer-
ical solution of the initial value problem

¥ =fty), y(@o) =10,
and derive the Adams-Bashforth formula

Yn+l = Yn + h [_%fn—l + gfn] ’ fn = f(tnayn)-

(b) Analyze the above method, to be more specific, find the local truncation error

and prove CONVErgence.
7. This problem is about choosing between a specific single-step and a specific multi-
step methods for solving the ODE:

v = f(t,y).

(a) Write the trapezoidal method and find its local truncation error.

(b) Show that the local truncation error for the following multistep method is of
the same order as in (a):

Ynt1 = 2Ypn — Yn—1— hfn—l + h.fm fn = f(tm yn)°

(c) What could be said about the global convergence rate for these two methods?
Justify your conclusions for both methods.

IV. Numerical Solutions of PDEs



8. Consider the problem

Up — Ugg — " =0, in [0,1] x [0, T,
u(z,0) = u(z,1) =0, in [0, 7Y,
u(z,0) = up(z), in [0,1].

We want to design a numerical method by the method of line discretization, with
trapezoidal rule to discretize time and the Galerkin method to discretize space.

Write down this method.
9. Approximate the heat equation u; = u,, by the method
uftt — P _ eu;-‘_',_"f — 207t ] +(1-6) uPy — 2} +ul
k h? h? ’
where k= At, h=Azand 0 <9< 1.
(a) Show that for any # the scheme is consistent and has the local truncation error
of O(k + h?).
(b) Find the value of 8 that yields local truncation error of O(k? + h?).
(c) Assuming that A = k/h% = const, find the value of 6 that yields local trunca-
tion error of O(h?).

(d) Apply the Von Neumann analysis on this scheme with the choice of 8 in (b),
to study the stability of this scheme (i.e. under which condition, this scheme

will be stable).




NUMERICAL MATHEMATICS PRELIMINARY EXAMINATION
FriDAY AUGUST 16, 2013

NAME:

I. Numerical Linear Algebra

1. Let A € R™*" matrix and b € R" with m > n.
(a) Assume that the rank(A) = n. Derive the equations that determine the solu-

tion to
= : — bl
z = arg min |Az — b3

(b) Outline a procedure for obtaining the solution to these equations that avoids
problems due to ill-conditioning that may occur if one uses Gaussian elimina-

tion on the equations directly.
2. Let A € R™*"® be a matrix with det(A) # 0. Prove that
1

A=) = de{?}_%l:o |A — Blla.

3. Let A be a real symmetric positive-definite matrix. Given a linear system Az = b,
consider the following iterative method:

Ti4+1 = Tk + 0Tk,

where r, := b — Az is the residual, zo # A~'b is arbitrary, and ay is a scalar
parameter to be determined.
(a) Derive an expression for ay such that ||rx1]|2 is as small as possible.
(b) Is this expression always well-defined and nonzero?
(c) Show that with this choice of ox,
llrell2 (1 - /\min(A))k/z.

lIrollz ~ Amax(A)
— Al Az o A1 0
[ ] =[5 2]
where A, As, A3, O € R%4, and O is the zero matrix. Suppose A is SPD.

(a) Prove that A;, A3 and S are also SPD.
(b) Let L, LT = A;, L3LT = A3, and BBT = S be respective Cholesky factoriza-
tions. Writing B in terms of L, and L3, prove that

C:=B'ABT= [ F{T }; ] , where F:=L7'A,L;7T.

4. Let



IL.

IIL.

Hint: Start by writing A = BBT + [ ,fT %2 ] .
2
(c) Let A, i =1,...2d, and p;, j = 1,...,d, be the eigenvalues of C and FFT,
respectively. Prove, that, with the appropriate numbering,

Me=1—/Im Mea=1+vEm k=1,...,d

Hint: Calculate (C — I)? and find the eigenvalues thereof.
(d) Let rank(A;) = r < d. Prove that rank(FFT) =r.

(e) Deduce that C has at most 2r + 1 distinct eigenvalues. In what number of
iterations is the CG algorithm (with exact arithmetic) guaranteed to converge
if applied to solve Cz = b?

Numerical Solutions of Nonlinear Equations

Assume that f : R — R is a smooth function with a simple root at z = z*. Suppose
Newton’s method is applied where the initial iterate, 2°, is sufficient close to z*.
Let z* and z**! be two successive approximate roots. Explain why |z5+! — z*| is a
good approximation to the error |z* — z*|.

Numerical Solutions of ODEs

Consider the following general 2-stage explicit Runge-Kutta method for advancing
the solution of dy/dt = F(y) with timestep h,

¥ =y" +ahF(y"),
y"! =" + BhF(y") + YRF(y*).

(a) Derive conditions on the coefficients «, 8, and 7 that insure that the method
has at least first order local truncation error.

(b) Assuming that the coefficients of the method are selected so that it is first
order, derive the expression that determines the linear stability region for the

method.
(a) Write down the trapezoidal rule for i = f(¢,).
(b) Derive an expression for its local truncation error.

(c) Prove the convergence of the trapezoidal rule, assuming the usual conditions
on f. (Hint: you can use the following result directly without proving it: if
lent1| < ales| + ch”, one has |e,| < ch™1(a™ — 1).)

(d) Find the linear stability domain of the method, and determine whether or not
it is A-stable.



IV. Numerical Solutions of PDEs
8. Consider the PDE problem

u = Uz, —u, for z€(0,1), te(0,7),
u(0,t) = u(1,t)=0 for te€(0,7),
u(z,0) = g(z) for z€(0,1).

(a) Using the notation h = 35 and k = %, write a numerical scheme that
is second order (in both space and time) and unconditionally stable in the
following sense: [|U™||,, < U]y, for all 0 < n < N —1 and for any A

and k, where ||U]l, :== ‘/ h3°M U? , and U? approximates the true solution
u(i-h,n-k),for0<i<M+1 and O <n < M. Justify your answer on the
unconditionally stability. (no need to verify the second order local truncation
error).

(b) Give sufficient conditions on k and & so that || U™!|| ., < [|U"||,, is guaranteed
foral 0 <n<N-1.

9. For the Cauchy problem of the advection problem
U+ u, =0,

we consider the Lax-Wendroff scheme
n k
u]+l - u + m ( 2"’ +u +1) 2%h (u;'l+1 - u?—l) )

for approximating its solution. Here & > 0 is the space step size, and k£ > 0 is the
time step size. Let u = k/h.
(a) Prove that, if 4 is constant and p < 1, then the local truncation error T}
satisfies the estimate

IT7| < Co (K + 12),

where Cy > 0 is a constant independent of £ and h. (Note: depending on how
the local truncation error is defined, it could become:

TP < Co (K + h?) k.

(b) Use the von Neumann analysis to show that the Lax-Wendroff scheme is stable
provided the CFL condition

0<u=%$1

holds.
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NUMERICAL MATHEMATICS PRELIMINARY EXAMINATION
FRIDAY, JANUARY 4, 2013

Numerical Linear Algebra

Let A be an m X n matrix with real entries and b € R® with m > n. Assume that
rank(A) = n. Derive the equation that determines the solution to

z = argmin {[JAx — b||; | x € R™}.

Argue that the solution z € R™ must be unique.

. Let u,v € R™ and let o € R. Define H(u, v, o) := | — ouv”, where | is the m x m

identity matrix.
(a) Find all nonzero values of ¢ for which H(u,u, g) is orthogonal. For such o,
determine all the eigenvalues and the corresponding eigenvectors of H(u, u, o).
(b) Let x € R™, and x # 0. Describe how to choose a vector u € R™ such that
H = H(u, u, o) has the property that Hx is a multiple of &%) = (1,0,0,--- ,0)7,
where o is as defined in (a).
Let A € R™*" be symmetric and positive definite. Let b € R™. Consider solving

Ax = b using the stationary iterative method given by

x+D) = x™ 4 B~1(b — Ax™),

where B € R™**® has an easily computable inverse. Suppose that B + BT — A is
positive definite. Let e := x(™ — x be the error of the n-th iteration. Show that
each step of this method reduces the A-norm of e, whenever e # 0. Recall,
the A-norm.of any y € R" is defined via

lylla = VyTAy.

Suppose that A is an upper triangular, nonsingular matrix. Show that both Jacobi
and Gauss-Seidel iterations always converge when used to solve Ax = b, and,
moreover, they will converge in finitely many steps.

Numerical Solutions of Nonlinear Equations

2 _
fen =5 51

«=[1]

Observe that f has the zero



IIL.

IV.
. Consider the following boundary-value problem: —%’é(m) = f(z), for z € (0,1),

Consider the iteration
1 1/2
Xn41 = Xn — Af(Xn), A=[1 (/) ] (1)

(a) Prove x, — X., provided x, is sufficiently close to x..

(b) Show that the convergence is at least quadratic.

(c) Is the iteration (1) equivalent to Newton’s method?
Numerical Solutions of ODEs

Applying a p-stage explicit Runge-Kutta method to approximate the solution of
the differential equation 3’ = Ay, y(0) = 1 results in the scheme

P
Yn+1 =T(AR)Yn, 7(2) = dez", Yw=1
k=0 :
(a) Show that if the method has order p then,
Pk
7‘(‘z) = z F)
k=0

ie,dy=%,0<1<p.
(b) Show that no explicit p-stage, order-p Runge-Kutta scheme is A-stable.
Show that the 2-step (implicit) Adams-Moulton method

5 8 1
Nit2 — Miv1 = h [ﬁf (Titas Miv2) + ﬁf (Zig1, Mir1) — ﬁf (-’Bi,ﬂi)J

is third-order. Is the method convergent? Give a detailed analysis to support your
last answer.
Numerical Solutions of PDEs

with %(0) = up, u(1) = u;. A finite difference approximation scheme is given by

—wi_1 + 2w; — w4 .
S =fi=flm), 1<i<m,

Wo = Uy, Wm+1 = Uy,

where b = L5, z; = i - h, and w; is the approximation to u(z;). Suppose that
f(z) < 0for all z € (0,1). Prove that the approximation w; satisfies a discrete
meximum principle, namely, (i)

max {ug, Uy } > w;,

for all 1 < i < m, and (ii) if max {ug, %1} = w;, for some 1 < i < m, then w; = ¢,
for all 0 < i <m+ 1, where « is an appropriate constant.



9. Consider the following linear reaction-diffusion problem:

2
Ou_0u_ . tr 0<z<l, 0<t<T,

ot oz?
u(0,t) = 0=u(1,?) for 0<t<LT,

u(z,0) = g(z) for 0<z<1l
The ‘Crank-Nicolson’ scheme for this problem is written as

s
Wit = wf + g (with — 2uP + w4+ wl, — 2+ wf,) - : (WP +wp),
where h = m—}ﬁ, § = %, and p = ;5. Prove that this scheme is convergent in the
sense that, for any 0 <n <

€l = 4| 2D (§)* < C(h? + 6%),
=1

where C is independent of space step size h and the time step size s. Clearly state
the restrictions that you impose on s and h, if any. You may assume that the local
truncation error has the appropriate form you need, without proof.

10. Consider the Lax Friedrichs scheme,

1 n as
Wit = 5 (i +uf) = 5 (Wl — i), B= T

for approximating solutions to the Cauchy problem for the advection equation
%t“— + a% = 0, where a > 0. Here h > 0 is the space step size, and s > 0 is the time

step size.
(a) Prove that, if s = C,h, where C) is a fixed positive constant, then the local
truncation error satisfies the estimate

|T;| -<—C0(s+h):

where Cp > 0 is a constant independent of s and h.

(b) Use the von Neumann analysis to show that the Lax-Friedrichs scheme is
stable provided the CFL condition

0<,u=2h351

holds. In other words, compute the amplification factor, g(¢), and show that
|g(é)] < 1, for all values of £, provided p < 1.
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1. Let A € R™*® be symmetric. Suppose the spectrum, denoted o(A) = {Ay,...,A} C
R, has the following ordering

A1l = = A1) > A > Aria] 200 2 M| 2 0.

Let S = {x3,...,X,} be an orthonormal basis of eigenvectors of A, with Ax; =
MeXx, for k = 1,...,n. The inverse iteration is as follows: given the real number
6 ¢ o(A) — which is closer to A, than any other element of o(A) — and v(?, with
|[v©@||, =1 and xTv(® > 0, define

(A — 61~ vim)
1A = 60~ vem]

v(m+1) —

Prove that v(™ — x,., as m — oo.

2. Let A € C***, Define
: S, =1+A+---4+A".

(a) Prove that the sequence {S,}.-, converges if and only if A is convergent.
(b) Prove that if A is convergent, then | — A is non-singular and

: — (1 _ a1
n].l_)l{’losn—(l Ay .

3. Suppose the Conjugate Gradient algorithm is applied to solve Ax = b where A €
R™*" js SPD and 0 # b € R"®, using xo = 0. Prove that, if the iteration has
not already converged (r;—; # 0), then there is a unique polynomial p; € P; that
minimizes ||p(A)eg||5. Show that the iterate x; has the error e; = p;(A)ey and,
consequently,

lleilla .
nf max [p(})| .
||e0||A = pEP: Aeo(A) Ip( )I

4. Let A € C™™ be invertible and b € C". Prove that the classical Jacobi iteration
method for approximating the solution to Ax = b is convergent, for any starting
value Xy, if A is strictly diagonally dominant, i.e.,

la; ;| > Z|a,k| , Vi=1,...,n.
ki



. Suppose that f : R — R, and, for some £ € R, f(¢) = 0, but f/(§) # 0. Assume
that, for some & > 0, f € C*(I;), where I; = [€ — 8, £ + ). Prove that the sequence
{z1} defined by the secant method,

f(zx) s = flzx) = f(zr-1) ’

Tpy1 =T — ——— k
+ k ’ T — Tg-1

converges (at least) linearly to the root { as k — oo, provided z_; and zo are
sufficiently close to &.

. The implicit midpoint method for solving the IVP ¢/(z) = f(z,y(z)), z € [a,}],
y(zo) = Yo, Zo € [a,b), is defined as

ni+1=ni+hf<xi+§7%)1 i=0)1)21"')

with 9 = yo, Z; = 2o+ th, h > 0. If f : [a,b] X R = R is uniformly Lipschitz in its
second variable, prove that the method is globally convergent, and the global rate
of convergence is second order, assuming that y € C3[a,b]. (You may assume that
the local truncation error is second-order without proof.)

. Consider the trapezoidal method for solving the IVP y/(z) = f(z, y(z)), = € [a, }],
y(xO) = Yo, To € [a’7 b)

h
M+l = N + ) [f(xna M) + f($n+1a"7n+l)] .

Wlth'l')o = Yo, Zi=$0+?:h, h>0.
(a) Prove that the local truncation error is second order if y € C3(a, b].
(b) Prove that the method is A-stable.

. Let V' be a Hilbert space with inner product (,-)v and norm |jvf|,, := 4/(v,v)v,
Vv eV. Suppose a: V x V — R is a symmetric bilinear form that is continuous,
ie, la(u,v)] < vllully lvlly, 37 > 0,V u,v € V, and coercive, i.e, a|ui <
la(u,u)], 3@ >0, Vu e V. Suppose L : V — R is linear and bounded, i.e.,
|L(u)] < Allully, for some A > 0, V u € V. Let u satisfy a(u,v) = L(v), for all
veV.
(a) Galerkin approximation: Suppose that S, C V is finite dimensional. Prove
that there exists a unique u;, € V that satisfies a(uy,v) = L(v), for all v € Sj.
(Hint: show the stiffness matrix is SPD.)

(b) Prove that the Galerkin approximation is stable: [Jua||;, < 2.

(c) Prove Cea’s lemma:

7.
lu—vnly <2 iaf flu=uly-



9. Consider the Lax Friedrichs approximation scheme,
n+1 1 n 7 [ n n
Ye' =3 (wioy +wi) — D) (Wi —wi), B= T

for the Cauchy problem for the advection equation %% + ag“; =0, where a > 0.
(a) Prove that, if s = C1h, where C; > 0, the local truncation error satisfies the

estimate v
IT¢| < Co(s+h) ,

where Cy > 0 is a constant independent of s, and h.

(b) Use the von Neumann stability analysis to show that the Lax-Friedrichs scheme
is stable provided the CFL condition

O<p==2<1

h
holds.
10. Consider the linear reaction-diffusion problem
u %
= _ <
5% — 522 for 0 <z<l, 0<t<T,

u(0,t) =0 =u(1,t) for 0<t<T,
u(z,0) = g(z) for 0<z<l1.

The ‘Crank-Nicolson’ scheme for this problem is written as
whtt = w} + g (wpt! — 2w+l +wp, — 2uf +wRy,) - % (wptt +wp),
where. .y = % Prove that the method is stable in the sense that

[ oo < W™ lloo

foralln >0,if0<p+§ <1
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I. Numerical Linear Algebra

1. Let A € C™" be Hermitian positive definite (HPD), represented as

A= [ a pf ] ,
p A
where a is a scalar, p € C*1, and A € Cr-Dx(-1), After 1 step of Gaussian
elimination (without pivoting), A will be reduced to the matrix

a p¥
0 B |’

where B € C(»~1x(-1)  Prove that B is HPD. In doing so, also prove that the
corresponding diagonal elements of B are smaller than those of A.

. Let A € R™*" be symmetric positive definite (SPD). Suppose P € R**™ m < n,
is full rank. '
(a) Show that Ac := PTAP is invertible.

(b) Define Q4 := PAZ'PTA. Show that Qu is the best approximation of u in
Range(P) with respect to the A-inner product, which is defined as follows:

(u,v)4 = (Au,v) Vu,veR”

where (-, ) is the standard inner product on R™.

. Let A € R*™**, b € R™. Suppose z and Z solve Az = b and (A + §A)Z = b+ db,
respectively. Assuming that ||A~Y||, [[§All2 < 1, show that

Iozll: . #a(A) (||5A||2 + ||5b||2)
llzllz — 1—52(A)||‘ffll: Al [bllz /°

where 0z := % — x.

. Let A € R™*™ be symmetric, and suppose J; is an eigenvalue with corresponding
eigenvector z;. Given z € R™, with ||z — z;|, = O(e), 1 3> € > 0, show that

zT Az
Tz

- )\e’ = 0(é*).
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III.

o

Numerical Solutions of Nonlinear Equations

Let {z(™} be a sequence generated by Newton’s method. Suppose that the initial

guess z( is well-chosen so that this sequence converges to the exact solution z,.

Prove that if f(z.) = f/(zs) = --- = f™(z,) = 0, f™(z,) # 0, z™ converges
(k+1) -1

. v . € _m

g-linearly to z, with kh_ﬁlo o =

m
Numerical Solutions of ODEs

Show that, if z is a non-zero complex number that is on the boundary of the linear
stability domain of the two-step BDF method
4 1 2
Yni2 ~ gUnt1 F 3l = §hf (Ta+2) Ynt2)s

then the real part of z must be positive. Thus deduce that this method is A-stable.

. Consider the scheme

Ynt3 + @(Ynt2 — Yns1) — Yn = hB(fas2 + fat1)
for approximating the solution to
¥'(z) = f(z,y(®), y(zo) =7
(2) Find the range of o and B, such that the resulting three-step method is stable;

(b) Find the value of a and 3, such that this method has order of accuracy 4;

(c) Can one adjust a and B to obtain a convergent fourth-order method? Justify
your answer.

. Numerical Solutions of PDEs

Consider the one dimensional heat problem
U — Uz = O, 0<z<l1l t>0
u(t,0) = u(,1)=0, t>0,
w(0,7) = wu(z), O<z<L
and the Crank-Nicholson method (u = k/h?)

uft - = £ [(uh — 2] + o) + (i - 205 +0p])]

_ 1/2
Define the discrete energy as E™ = (h Zj:ol (u?) 2) . Prove the energy stability

of this method by showing that E" < E°.
Suppose a > 0 and consider the following skewed leapfrog method for solving the
advection equation u; + au, = 0:

uftt = uf7) — (ak/h — 1)(u} —u}_).



(a) What is the order of accuracy of this method?

(b) For what range of Courant number ak/h does this method satisfy the CFL
condition? (Recall the CFL condition: A numerical method can be conver-
gent only if its numerical domain of dependence contains the true domain of
dependence of the PDE, at least in the limit as k¥ and & go to zero.)

(c) Show that the method is in fact stable for this range of Courant numbers by
doing a von Neumann analysis.
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I. Numerical Linear Algebra

1.

II.
. Show that if f is a real function of one real variable, f” is Lipschitz continuous,

Let A be a nonsingular square matrix and let A = QR and A*A = U*U be QR and
Cholesky factorizations of A and A*A, respectively, with the usual normalizations
7jj» uj; > 0. Is it true or false that B = U? Justify your answer.

. Let A € R®*" be nonsingular. Prove that
- [IBll2 . } 1
min - : A+ B singular p = ——,
{||A||2 r2(A)

where k3(A) := ||A||2|A7}||2 denotes the 2-norm condition number of A.

Let A, B € C™*™, with A being a nonsingular matrix. Consider solving the linear

system
Az + By = by, Bz + Ay = b,

for the unknowns z and y.

(a) Show that p(A~1B) < 1 is a necessary and sufficient condition for convergence
of the iteration scheme:

Azk+1 = bl _ Byk, Ayk+1 =by— Ba:k,
with an arbitrary initial guess.
(b) If we consider a slightly modified iteration scheme:
A$k+l =b - By'“, Ayk+l =by — Bx""’l,

does the conclusion of part (a) still hold? Why yes or why no?

(c) Under the assumption that both iterative methods converge, determine which
method converges faster? Justify your answer.

Let A € R™** be a SPD matrix. Any two vectors u,v € R” are called A-orthogonal
if vT Au = 0. Prove that every subspace of R™ has an A-orthogonal basis.

Numerical Solutions of Nonlinear Equations

and f(z.) = f'(z.) = 0 but f”(z.) # 0 then the iteration
Tntl = Tn — 2f($n)/f,(xn)a

converges quadratically to z, provided z, is sufficiently near to z, , but not equal
to z..



III. Numerical Solutions of ODEs

6.

7.

0o

Consider the two-stage Runge-Kutta method
V' =w%+ahfW), Y=y +hbfW)+cfy)

(a) Find the relation among the coefficients a, b and c, so that the method is of
order 2. Write the resulting Runge-Kutta method in the tableaux form.
(b) Find the linear stability region of this method.

(c) Consider the case when a = 1/2, b = 0 and ¢ = 1. Prove explicitly that this
method converges when applied to the IVP ¢/ = f(y), yo = 1, where f is a
Lipschitz function with Lipschitz constant A.

a) Find the range of a € R for which the method

Yn+2 + (a - l)yn-i-l - ((a + S)f(tn+2’ yn+2) + (304 + l)f(tm yn))

is consistent and stable.

b) Apply the method with a = —1 to the scalar IVP 3’ = y, y(0) = 1 and solve
exactly the resulting difference equation, considering the starting values to be yp =
y1 = 1. Show theoretically that the numerical solution does not converge as h — 0

and n — oo.
Numerical Solutions of PDEs

. Consider the PDE

Ut = Ugz — YU,
which models a diffusion with decay, provided v > 0. Consider the numerical
methods of the form

upt = +; [wf ) — 2uf +ulyy +uft) — 203+l ] —ky [(1 - 0)u] + 6u],
where p = k/h? and 6 is a parameter.
(a) By computing the local truncation error, show that this method is O(k? + h?)
accurate, where p = 2 if § = 1/2 and p = 1 otherwise.
(b) Using von Neumann analysis, show that this method is unconditionally stable
if@>1/2.
(c) Show that if # = 0 then the method is stable provided k¥ < 2/v , independent
of h.
Consider the constant coefficient advection equation in R2:

u +aus +buy, =0,  u(z,y,0) =g(z,v),

where a > 0 and b > 0, and a Cartesian grid defined by the grid points z; = iAz,
y; = jAy with
up; = u(zs, y5,t")-



Furthermore, consider the following finite difference numerical method:

alt bAt
uil =}, — E(“?H,j —ul ;) — 2Ay Ui~ Upjoa)-

(a) Derive the local truncation error of the provided method.

(b) Is this method convergent? Justify your answer. If yes, what is the required
condition to make it convergent? If no, can you modify it so that the resulting
method is convergent (no need to prove)?
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Numerical Linear Algebra

Consider a linear system Ax = b with A € R**", Richardson’s method is an
iteration method

Mx** = Nx* +b
with M = 11, N =M - A= 21 — A, where w is a damping factor chosen to make
M approximate A as well as possible. Suppose A is positive definite and w > 0.
Let A\; and )\, denote the smallest and largest eigenvalues of A.

(a) Prove that Richardson’s method converges if and only if w < %

(b) Prove that the optimal value of w is w, = 5=25-.

Let A € C™" (m > n) and b € C™. Prove that the vector x € C" is a least
squares solution of Ax = b if and only if r 1 range(A), where r := b — Ax.

Suppose that A, B € C™*™ and A is non-singular and B is singular. Prove that
1 _JA-B|
(A~ Al
where &(A) = ||A|| - |A7Y||, and || - || is an induced matrix norm.

Numerical Solutions of Nonlinear Equations

Let f : Q@ € R® — R" be twice continuously differentiable. Suppose x* € Q is a
solution of f(x) = 0, and the Jacobian matrix of f, denoted J, is invertible at x*.

(a) Prove that if x° € Q is sufficiently close to x*, then the following iteration

converges to x*:
xF*1 = xF — Jp (x0) 7T () .

(b) Prove that the convergence is typically only linear.
Numerical Solutions of ODEs

. Consider

Yy =Fty®), t2t, ylo)=u,

where f : [tp,t*] xR — R is continuous in its first variable and Lipschitz continuous
in its second variable. Prove that Euler’s method converges.

. Consider the scheme

Yn+2 F Yn41—2Yn = h (f(tn+2; yn+2) + f(tn+1: yn+1) + f(tm yn))



Iv.
. Consider the Crank-Nicholson scheme applied to the diffusion equation %tl‘- =

for approximating the solution to
y,(t) = f(t) y(t)) , t2 tO ’ y(tO) =% -

What is the order of the scheme? Is it a convergent scheme? Is it A-stable? Justify
your answers.
Numerical Solutions of PDEs

2u
)z2 )

Q.;IQ

t>0, —o00 <z <o0.

(a) Show that the amplification factor in the Von Neumann (Fourier) analysis of
the scheme is

14 32 At
9(§) = 1=l z = 25— (cos (Azg) - 1) .

(b) Use the result of part (a) to show that the scheme is stable.

. Consider the explicit scheme

bulAz , . n <
2 (ue+1—“z_1) " 1<e<L’

uptt = ug +p (g — 2uf + ) -
for the convection-diffusion problem

—=———b— f <z<l1 <t<t*
5% = 522 % or 0<z<L1, 0<Lt<t",
u(0,t) = u(1,t) =0 for 0<t<t,
u(z,0) = g(x) for 0<z<1,
where b > 0, p = ﬁ, Az = £3, and At = &. Prove that, under suitable
restrictions on x and Az, the error grid functions e” satisfy the estimate

le*lle < #*C (At + (Az)) |

for all n such that nAt < t*, where C > 0 is a constant.



NUMERICAL MATHEMATICS PRELIMINARY EXAMINATION
Augusrt 11, 2010

NAME:

L. Numerical Linear Algebra

1. Let A € C™" (m > n) and let A = QR be a reduced QR factorization.
(a) Prove that A has rank n if and only if all the diagonal entries of R are non-zero.
(b) Suppose rank(A) = n, and define P = QQ*. Prove that range(P) = range(A).
(c) What type of matrix is P? | '

2. Suppose that A € R™*™ is symmetric positive definite (SPD).
(a) Show that ||x|| , = vXTAx defines a vector norm.
(b) Let the eigenvalues of A be ordered so that 0 < A; < Ay < --- < \,.. Show

that
vV Ixlly < 1%l < vV 1,

for any x € R™.
(c) Let b € R™ be given. Prove that x, € R™ solves Ax = b if and only if x,
minimizes the quadratic function f : R™ — R defined by

f(x) = %xTAx —x’b .

3. Suppose that A € R™ ™ is SPD and b € R™ is given. The n** Krylov subspace
is defined as K, := (b,Ab, A%b,...,A""'b). Let {x;}}=}, xo = 0, denote the
sequence of vectors generated by the conjugate gradient algorithm. Prove that if the
method has not already converged after n—1 iterations, i.e, rn—y := b—Ax,_; # 0,
then the n" iterate x, is the unique vector in K, that minimizes ¢(y) := [|x, — y|,
where x, := A™1b.

4. Prove that A € R™™ is SPD if and only if it has a Cholesky factorization.

II. Numerical Solutions of Nonlinear Equations

5. Assume that f : R — R, f € C*(R), f'(z) > 0, for all z € R, and f(z) > 0, for
all x € R.
(a) Suppose that a root ¢ € R exists. Prove that it is unique. Exhibit a function
satisfying the assumptions above that has no root.
(b) Prove that for any starting guess zo € R, Newton’s method converges, and
the convergence rate is quadratic.



IIIL.
. Determine all the values of 8 for which the §-method,

IV,

Numerical Solutions of ODEs

bt = Y+ b0y 9o) + (1 = 6) f(tns1, Bosa)]
is A-stable.

. Show that the explicit multistep method

Yn+3 + Q2Yni2 + A1Yni1 + QoY = h[ﬁZf (tn+2, yn+2) +b6f (tn-i-la yn+1) + fof (tn, yn)]

for approximating the solution to the initial value problem

y'@) = fty@), yl)=w
is fourth order only if ap + a3 = 8 and a; = —9. Prove that this method cannot
be both fourth order and convergent.
Numerical Solutions of PDEs

Consider the Crank-Nicolson scheme

ntl _ . n KM n+1 n+1 n+1 n 7 n
U =Uupy + 5 (“e-1 —2up" 4 1+ U — 2uy + ue+1)

for approximating the solution to the heat equation % = gz—;é on the intervals
0 <z <1and 0 <t< ¢t with the boundary conditions «(0,%) = u(1,t) = 0.

(a) Show that the scheme may be written in the form u®*! = Au®™, where A €
Rim" (the space of m x m sysmmetric matrices) and
lAxIl, < Il ,

for any x € R™, regardless of the value of u.

(b) Show that
lAxll, < Il

for any x € R™, provided 1 < 1. (In other words, the scheme may only be
conditionally stable in the max norm.)

Consider the Lax-Wendroff scheme,

(12 (At)z alAt n 7
uptt =up + 2(A7)2 (upy — 20 +ufy,) — 27z (s —uga)

for the approximating the solution of the Cauchy problem for the advection equation
%;“ + a"—: = 0, where a > 0. Use Von Neumann’s method to show that the Lax-

Wendroff scheme is stable provided the CFL condition
alt

—_—<
A:z:_l

is enforced.



IL

III.

Numerical Mathematics Preliminary Exam
January 8, 2010
Numerical Linear Algebra

Let x € R™ and y € R". A trivial algorithm for computing the rank-one matrix (also
called the outer product of x and y) A~= xyT is to compute the mn. products z;y;

with ® and collect them into a matrix A.
(a) Determine whether this algorithm is stable. Justify your answer.
(b) Determine whether this algorithm is backward stable. Justify your answer.

Suppose A € R™*" (m > n) has full rank.
(a) Prove that Ax = b has a unique least squares solution.
(b) Is the assertion of (a) still true if the A is rank-deficient? Why yes or why no?

Let A be a symmetric matrix and x an approximation to an eigenvector v of A, with
Av = \v for some A. Let x denote the Rayleigh quotlent for x. Show that if ||x—v|| =€

then we have |u — A| = O(é?).

Consider the matrices of the following form:

1p
[p 1], PER, |o| <1

(a) Determine the values of p such that the Jacobi iterative method converges for
arbitrary starting value xo € R2.

(b) Determine the values of p such that the Gauss-Seidel iterative method converges
for arbitrary starting value xo € RZ.

Solutions of Nonlinear Equations

Let f: R* — R be twice continuously differentiable. Suppose x* is an isolated root of
f and the Jacobian of f at x* (J(x*)) is non-singular. Determine condition(s) on € so
that if |[xo — X*||2 < € then the following iteration converges to x*:

Xpp1 = Xk — J(x0) 1 f(xx), k=0,1,2,...
Numerical Solutions of ODEs

Let D and @ be n X n matrices, with @ invertible and Q1DQ = A = diag(\y,. .., An)-
Show that applying any Runge-Kutta method to solving the system

y' =Dy
is equivalent to applying the same Runge-Kutta method to solving the system
7 = Az,

where z = Q" 1y.



7.

V.

Consider the centered difference method

Yntl = Yn-1+ 2hf(tn1 yn)

for the initial value problem (IVP) ¥’ = f(t,¥), ¥(0) = yo.

(a) Let f(¢,y) = cosy. Prove (by the definition) that the centered difference method
converges provided that o and y; converges (as b — 0%) to y(0) and y(t,), respectively.

(b) Assume that y(0) — yo = O(h*) and y(t;) — y» = O(h*), determine the order of
convergence for the centered difference method.

Numerical Solutions of PDEs

Consider the following two-step method for solving the 1-D heat equation u; — uz. = 0:

upt?—up _ il —2upt! + U ~0
2At h? '

(a) Determine the order of the truncation error of this method (in both space and
time).

(b) Use the Fourier Analysis to determine for what value u = 5 > 0 (if any) that the
method is stable.

(c) Is this method convergent for 0 < 4 < 27





