PDE Preliminary Exam, August 2024

For $r > 0$, let $B_r = \{x \in \mathbb{R}^n : |x| < r\}$, $\partial B_r = \{x \in \mathbb{R}^n : |x| = r\}$. The unit parabolic cylinder is $Q = B_1 \times (0, 1]$ with parabolic boundary $\partial_p Q = (B_1 \times \{0\}) \cup (\partial B_1 \times (0,1]).$

1. Let $\Omega = \{(x, t) : x \in \mathbb{R}, t > 0\}$. Assume $a \in C^{\infty}(\mathbb{R}), a \ge 0$ on \mathbb{R} and $f \in C_0^{\infty}(\mathbb{R}),\ f \geq 0$ on \mathbb{R} . Suppose $u(x,t) \in C^1(\overline{\Omega})$ is a solution of

$$
u_t + a(t)u_x = -u \quad \text{on } \Omega,
$$

$$
u(x,0) = f(x), \quad x \in \mathbb{R}.
$$
 (1)

(a) For each $t > 0$, prove that $u(\cdot, t)$ has compact support and is nonnegative on $\overline{\Omega}$. Find a formula for u on $\overline{\Omega}$.

(b) Let $p \in [1,\infty)$ and

$$
E(t) = \int_{\mathbb{R}} u^p dx, \quad t \ge 0.
$$

Prove $E(t) = ce^{-pt}$ for all $t \ge 0$ with $c = \int_{\mathbb{R}} f^p dx$. (c) Prove uniqueness of the solution $u \in C^{\overline{1}}(\overline{\Omega})$ in (1).

2. Let $\Omega = \{(x, y) \in \mathbb{R}^2 : |x| < 1, y > 1/(1-x^2)\}, k \in \mathbb{R}$. Suppose $u \in C^2(\overline{\Omega})$ satisfies $\Delta u = 0$ on Ω , $u = 0$ on $\partial\Omega$, and the growth condition $|u(x,y)| \leq e^{ky}$, $(x,y) \in \overline{\Omega}$. Prove there exists $k_0 > 0$ such that for all $k < k_0$, then $u = 0$ on Ω . Specify k_0 .

Hint: Compare u with v on the domain $\Omega \cap \{y < R\}$, where v is a harmonic function defined on $\Omega' = (-1,1) \times \mathbb{R}^+, v = 0$ on $\partial \Omega'$.

3. Let $\Omega \subset \mathbb{R}^n$ open, bounded, $\partial \Omega \in C^\infty$ (smooth boundary). Let

$$
\lambda_1(\Omega) = \inf \left\{ \int_{\Omega} |\nabla u|^2 \, dx \big/ \int_{\Omega} u^2 \, dx : u \in C^1(\overline{\Omega}), u|_{\partial \Omega} = 0, u \neq 0 \right\}
$$

and assume $\lambda_1(\Omega) > 0$. Consider the boundary value problem, $u \in C^2(\Omega) \cap$ $C^1(\overline{\Omega}),$

$$
-\Delta u = \frac{u}{1+u^2} \quad \text{on } \Omega,
$$

$$
u = 0 \quad \text{on } \partial\Omega.
$$
 (2)

(a) Prove, if $\lambda_1(\Omega) \geq 1$, then (2) has only the trivial solution $u \equiv 0$ on Ω .

(b) Find $F : \mathbb{R} \to \mathbb{R}$ such that the following is true: If u minimizes

$$
I[u] = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 + F(u) \right) dx
$$

among all $u \in C^2(\Omega) \cap C^1(\overline{\Omega}), u|_{\partial\Omega} = 0$, then u satisfies (2).

(c) Give a finite lower bound (depending only on Ω) for $I[u]$ among all $u \in C^1(\overline{\Omega})$, $u|_{\partial \Omega} = 0$ (the inequality $\ln(1+t) \leq \delta t + C_{\delta}$, for $t \geq 0$, $\delta \in$ (0, 1], $C_{\delta} = \ln \frac{1}{\delta} - (1 - \delta)$ may be useful and can be assumed without proof). (d) If $\lambda_1(\Omega) < 1$, prove inf $I[u] < 0$ where the infimum is over all $u \in$ $C^1(\overline{\Omega}), u|_{\partial\Omega} = 0.$

Hint: Seek v with $I[v] < 0$ among functions with sufficiently small sup over Ω.

4. Let $\theta \in (0,1)$ and define $\rho(t) = (1 - \theta^2)t + \theta^2$, $v(x,t) = \rho(t) - |x|^2$. Let $E = \{(x, t) \in Q : |x|^2 < \rho(t)\}\$ (Q = unit parabolic cylinder) and $u(x,t) = v(x,t)^2 \rho(t)^{-q}$ for $(x,t) \in E$. Prove there exists $q_0 \ge 2$ (depending on *n*, θ) such that, for all $q \geq q_0$, we have

$$
u_t - \Delta u \le 0 \quad \text{on } \ \mathbf{E}.
$$

5. (a) Define $v(x,t) = e^{-\gamma t}(1-|x|^2)^2$ on the unit parabolic cylinder Q. Prove there exists $\gamma_0 > 0$ sufficiently large (depending on n) so that, for all $\gamma \geq \gamma_0$,

$$
v_t - \Delta v \le 0 \quad \text{on} \quad Q.
$$

(b) Prove there exists $\beta \in (0,1)$ (depending only on n) such that for every $u \in C^{\infty}(Q) \cap C(\overline{Q})$ satisfying

 $u_t - \Delta u \leq 0$ on Q, $u(x, 0) \leq 0$ for all $x \in B_1$,

we have

$$
u(x, 1) \le \beta \sup_{\partial_p Q} u^+
$$
 for all $x \in B_{1/2}$.

Here $u^{+} = \max\{u, 0\}.$

Hint: To prove (b), let $M = \sup_{\partial_p Q} u^+$ and consider the cases $M = 0$ and $M > 0$. For $M > 0$, use (a) and apply the maximum principle to $\phi(x,t) = u(x,t) - M + Mv(x,t), \ (x,t) \in Q.$

6. Let $T > 0$ and define the backward cone $\Omega = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} : 0 \le t \le t\}$ $T, |x| \leq T - t$ with base $B = \{(x, 0) : |x| \leq T\}$. Let $f, g \in C^{0}(B), h \in$ $C^0(\Omega)$ and consider the initial value problem

$$
u_{tt} - \Delta u = hu_t^2 \quad \text{on } \Omega,
$$

\n
$$
u = f, u_t = g \quad \text{on } B.
$$

\n(3)

If $u_1, u_2 \in C^2(\Omega)$ are solutions of (3), prove $u_1 = u_2$ on Ω .

7. (a) Find a solution $w \in C^2(\mathbb{R}^n \times [0,1))$ of

$$
w_{tt} - \Delta w = tw_t^2 \quad \text{on } \mathbb{R}^n \times [0, 1),
$$

$$
w = 0, w_t = 2 \quad \text{on } \mathbb{R}^n \times \{0\}.
$$

(b) Let $g \in C_0^{\infty}(\mathbb{R}^n)$ such that $g(x) = 2$ for $|x| \leq 1$. Suppose $u \in C^2(\mathbb{R}^n \times$ $[0, 1)$ is a solution of

$$
u_{tt} - \Delta u = tu_t^2 \quad \text{on } \mathbb{R}^n \times [0, 1),
$$

$$
u = 0, u_t = g \quad \text{on } \mathbb{R}^n \times \{0\}.
$$

Prove $\lim_{t\to 1^-} u(0,t) = +\infty$.

PDE Prelim – Jan 2024

Question 1: Consider the equation

$$
xu_x + 2u_y = 1.
$$

- (a) Solve the equation with the condition $u(x, 0) = x^2$.
- (b) Find the condition on $g : \mathbb{R} \to \mathbb{R}$ so that the equation with the condition $u(x^2, 4x) =$ $q(x)$ has a solution.

Question 2: Let $n \in \mathbb{N}$ and $n \geq 2$. For $R > 0$ and $\delta \in (0, 1]$, we denote

$$
B_{R,\delta} = \left\{ x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} : |x'| < R \quad \text{and } 0 < x_n < \delta R \right\}.
$$

(a) Let $f : B_{1,1} \to \mathbb{R}$ be a bounded function and let

$$
w(x) = \left(1 - |x'|^2 + \delta^{-1}(1/2 + M)(x_n - \delta)\right)x_n, \quad x = (x', x_n) \in B_{1,1}
$$

where $M = \sup$ $x \in B_{1,1}$ $|f(x)|$ and $\delta \in (0,1)$. Prove that there is $\delta_0 \in (0,1)$ depending only on n such that

$$
\Delta w \ge f \quad \text{on} \quad B_{1,\delta},
$$

for all $\delta \in (0, \delta_0)$.

(b) Let $u \in C^2(B_{1,1}) \cap C(\overline{B}_{1,1})$ be a non-negative function that solves the equation

$$
\Delta u = f \quad \text{in} \quad B_{1,1}.
$$

Prove that for each $\delta \in (0, \delta_0)$

$$
\inf_{\substack{|x'|<1\\x_n=\delta}}\frac{u(x',x_n)}{x_n} \le 4\left(\inf_{\substack{|x'|<1/2\\0
$$

Hint: For (b), one may start with assuming that

$$
\inf_{\substack{|x'|<1\\x_n=\delta}}\frac{u(x',x_n)}{x_n}=1
$$

then use the maximum principle for $u - w$ on $B_{1,\delta}$ to derive the result. The general case can be derived by a scaling argument.

Question 3:

(a) Prove: If u is a C^2 function such that u^2 is subharmonic, and u^4 superharmonic in a domain $Ω$, then *u* is constant there.

(b) Prove the same with assuming only $u \in C^0$, with sub/super-harmonicity defined in this case in terms of spherical means.

Question 4: Suppose u is a classical solution to the heat equation $u_t = u_{xx}$ on $[a, b] \times \mathbb{R}_+$ with boundary conditions $u(a, t) = 0 = u(b, t)$. Suppose $(v, w) \mapsto F(v, w)$ is a convex C^2 function of its two arguments, i.e., $\begin{bmatrix} F_{vv} & F_{vw} \\ F_{vw} & F_{ww} \end{bmatrix}$ is positive semidefinite. Further assume that $F_v(0, w) = 0$. Prove that $E(t) := \int_a^b F(u, u_x) dx$ is non-increasing as a function of t.

Question 5:

(a) Prove that the problem

$$
u_t = \Delta u + m|\nabla u|^2 \quad \text{in } \mathbb{R}^n \times]0, \infty[
$$

$$
u(x, 0) = u_0(x)
$$

has a unique classical solution (with no growth condition at infinity for the solution assumed) for any bounded and continuous initial condition u_0 , and write down an integral formula for this solution. *Hint: Substitute* $v = \exp[mu]$.

(b) Now consider the same equation on a bounded domain with homogeneous Dirichlet boundary conditions (compatible with the initial conditions): $u(\cdot; m)$ satisfies

$$
u_t = \Delta u + m|\nabla u|^2 \quad \text{in } \Omega \times]0, \infty[
$$

$$
u(x, 0) = u_0(x)
$$

$$
u(x, t) = 0 \quad \text{for } x \in \partial\Omega, \ t \ge 0
$$

Compare the equation

$$
w_t = \Delta w + g(x)|\nabla w|^2 \quad \text{in } \Omega \times]0, \infty[
$$

$$
w(x, 0) = u_0(x)
$$

$$
w(x, t) = 0 \quad \text{for } x \in \partial\Omega, \ t \ge 0
$$

where $m \leq g(x) \leq M$. Prove that $u(x, t; m) \leq w(x, t) \leq u(x, t; M)$. Question 6: Consider the IVP for the 3D wave equation with spherical symmetry

$$
u_{tt}(X,t) = c^2 \Delta u(X,t), \quad t > 0 \text{ and } X = (x, y, z) \in \mathbb{R}^3
$$

$$
u(X,0) = 0
$$

$$
u_t(X,0) = h(r)
$$

where $r := |X| = \sqrt{x^2 + y^2 + z^2}$ and $h(r)$ is a smooth function with compact support in \mathbb{R}^3 .

- (a) Find the IVP satisfied by $u(r, t)$ with respect to (r, t) variables.
- (b) Show that $v(r, t) := ru(r, t)$ satisfies the 1D Initial-BVP wave equation

$$
v_{tt} = c^2 v_{rr}, \quad r \ge 0, t > 0
$$

$$
v(0, t) = 0, \quad t > 0
$$

$$
v(r, 0) = 0, \quad r \ge 0
$$

$$
v_t(r, 0) = rh(r), \quad r \ge 0
$$

and solve it. Hint: What IVP does the odd extension (in r) of v solve?

(c) Find a solution formula to the IVP in part (a) for u by using the solution $v(r, t)$ of part (b).

Question 7: Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary. Assume that $u(x, t)$ is a smooth function on $\overline{\Omega} \times [0, \infty)$ solving the initial-BVP

$$
u_{tt} - \Delta u + V(x)u = h(x), \quad x \in \Omega, t > 0
$$

$$
u(x, 0) = f(x), \quad x \in \Omega
$$

$$
u_t(x, 0) = g(x), \quad x \in \Omega
$$

$$
u + \frac{\partial u}{\partial n} = 0 \quad x \in \partial\Omega, t \ge 0
$$
 (*)

where $f(x)$, $g(x)$, $V(x)$, and $h(x)$ are smooth functions on $\overline{\Omega}$.

(a) Assuming $h = 0$, show that

$$
E(t) = \frac{1}{2} \int_{\Omega} (u_t(x,t))^2 + |\nabla u(x,t)|^2 + V(x)(u(x,t))^2 dx + \frac{1}{2} \int_{\partial \Omega} (u(x,t))^2 dS(x)
$$

is a conserved quantity, i.e., $E(t) \equiv constant$ for all $t \geq 0$. What is the value of this constant (in terms of the data in $(*)$)?

(b) Use part (a) to show that for any smooth f, g, h, V with $V(x) \geq 0$ on Ω , the initial BVP has at most one smooth solution.

Prelim PDEs — August 2023

Problem 1:

Let Ω be a smooth bounded domain in \mathbb{R}^n and $f \in C^0(\mathbb{R} \to \mathbb{R})$ strictly increasing. Consider the boundary value problem

$$
\Delta u = f(u) \quad \text{in } \Omega
$$

$$
u(x) + a(x)\partial_{\nu}u(x) = g(x) \quad \text{on } \partial\Omega
$$
 (*)

where a and g are continuous functions on $\overline{\Omega}$ and $a > 0$. Assume $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ is a solution.

- (a) Show: The solution of the BVP (*) is unique.
- (b) Assuming F to be an antiderivative of f, show: u solves the BVP if and only if u minimizes the functional

$$
I[u] := \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 + F(u)\right) dx + \frac{1}{2} \int_{\partial \Omega} \frac{1}{a(x)} (u(x) - g(x))^2 dS(x)
$$

among all $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ satisfying the BC.

Problem 2:

Consider the problem

$$
u_t + uu_x = u - \frac{1}{4}x
$$

$$
u(x, 0) = g(x).
$$

(a) Write a formula for the characteristic curves $(t(\tau), x(\tau), z(\tau))$.

(b) Characterize all functions g that give rise to a global classical solution (i.e., $u \in$ $C^1(\mathbb{R}\times\mathbb{R})$.)

Problem 3:

Prove: If e^u is harmonic in \mathbb{R}^n , then u is constant.

Problem 4:

Let Ω be a bounded smooth domain in \mathbb{R}^n . For this problem, we may use the following version of the weak maximum principle without proof:

Suppose that $T > 0$, and $u \in C^2(\overline{\Omega} \times [0,T])$ is a solution to

$$
\begin{cases} u_t - \Delta u + c(x, t)u \le 0 & \text{in } \Omega \times (0, T) \\ \frac{\partial u}{\partial \nu} = 0 & \text{in } \partial \Omega \times (0, T), \\ u(x, 0) \le 0, \quad x \in \Omega, \end{cases}
$$

where for $c_0 > 0$, $c(x,t) \ge -c_0$, and ν is the outward unit normal to $\partial\Omega$. Then $u \leq 0$ in $\overline{\Omega} \times [0, T]$.

Suppose that $u \in C^2(\overline{\Omega} \times [0,\infty))$ is solution to the initial-Neumann problem

$$
\begin{cases}\n u_t - \Delta u = f(u) & \text{in } \Omega \times (0, \infty) \\
 \frac{\partial u}{\partial \nu} = 0 & \text{in } \partial \Omega \times (0, \infty), \\
 u(x, 0) = g(x), & x \in \Omega\n\end{cases}
$$

where $f(u) = u(1-u)(1+u)$ and $g \in C^0(\overline{\Omega})$. For a given constant v_0 , denote by $v(t; v_0)$ the solution to the initial value problem

$$
\begin{cases}\n\frac{dv}{dt} = f(v) \\
v(0) = v_0,\n\end{cases}
$$
\n(ODE)

(a) Show that

 $v(t; m) \le u(x, t) \le v(t; M), \qquad \forall (x, t) \in \overline{\Omega} \times [0, \infty)$

where $m = \min_{\overline{\Omega}} g$ and $M = \max_{\overline{\Omega}} g$

(b) Show that if $g(x) > 0$, for all $x \in \overline{\Omega}$, then $\lim_{t \to \infty} u(x, t) = 1$ uniformly for $x \in \overline{\Omega}$. [Hint: What can you say about the behavior of the solution of (ODE) if $v_0 > 0$?]

Problem 5:

Consider the following 1d diffusion equation with a nonlinear term

$$
u_t - bu_{xx} + a(u_x)^2 = 0 \t\t b > 0, \text{ and } a \neq 0 \text{ constant.} \t (*)
$$

(a) Show that the transformation $v(x,t) = e^{-\frac{a}{b}u(x,t)}$ transforms the nonlinear equation (∗) into

$$
v_t - bv_{xx} = 0.
$$

(b) Apply part (a) to find an explicit formula for a solution of the initial value problem

$$
\begin{cases} u_t - bu_{xx} + a(u_x)^2 = 0, \quad t > 0, x \in \mathbb{R} & \text{(for } b > 0 \text{ and } a \neq 0) \\ u(x, 0) = g(x), \end{cases}
$$

Give a condition on the solution u that implies its uniqueness.

Question 6:

For $k = 1, 2$ let φ_k, ψ_k be smooth compactly supported functions defined on R, and assume that u_k is the solution to the wave equation

$$
u_{tt} - a^2 u_{xx} = f \quad \text{in} \quad \mathbb{R} \times (0, \infty)
$$

that satisfies

$$
u(x, 0) = \varphi_k(x)
$$
 and $u_t(x, 0) = \psi_k(x)$ for $x \in \mathbb{R}$

where $a > 0$ is a fixed number and $f : \mathbb{R} \times [0, \infty)$ is a given smooth function. Prove that for every $\varepsilon > 0$ and $T > 0$, there is $\delta > 0$ such that if

$$
\sup_{x \in \mathbb{R}} |\varphi_1(x) - \varphi_2(x)| \le \delta \quad \text{and} \quad \left(\int_{-\infty}^{\infty} |\psi_1(x) - \psi_2(x)|^2 dx \right)^{1/2} \le \delta
$$

then

$$
\sup_{x \in \mathbb{R}, t \in [0,T]} |u_1(x,t) - u_2(x,t)| \le \varepsilon.
$$

Question 7:

Let $c: \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}$ be a continuous function, and $\varphi: \mathbb{R}^3 \to \mathbb{R}$ be a function such that $\varphi = 0$ on B_1 . Assume that u is a smooth solution of the nonlinear wave equation

$$
u_{tt} - \Delta u + c(x, t) |\nabla u|^2 + u^3 = 0
$$
 in $\mathbb{R}^3 \times (0, \infty)$

that satisfies the initial data

$$
u(x, 0) = \varphi(x), \quad u_t(x, 0) = 0 \quad x \in \mathbb{R}^3.
$$

Prove that $u = 0$ in the cone

$$
K = \{(x, t) \in \mathbb{R} \times [0, \infty) : 0 \le t \le 1, |x| \le 1 - t\}.
$$

Here B_{ρ} is the ball in \mathbb{R}^{3} with radius $\rho > 0$ and centered at the origin.

PDE Preliminary Exam, January 2022

There are 7 problems in this exam. Do all of them.

1. Suppose that $f(x)$ is smooth and nonnegative

$$
u_t + xu_x = -u^2, \quad (x, t) \in \mathbb{R} \times (0, \infty)
$$

$$
u(x, 0) = f(x)
$$

- (a) Write a formula for the solution u and discuss the behavior of $u(x, t)$ as $t \to \infty$.
- (b) If $f(x) > 0$ on $0 < x < 1$ and $f(x) = 0$ elsewhere, plot the region in the (x, t) -plane where the (weak) solution $u(x,t) > 0$.
- 2. For $r > 0$, let $B_r = B_r(0) \subset \mathbb{R}^n$. Suppose that $u \in C^2(B_1) \cap C(\overline{B}_1)$ such that $\Delta u \geq 0$ in B_1 . For $\epsilon > 0$, $x_0 \in \partial B_1$ and $\alpha \geq 2n + 1$ let

$$
h_{\epsilon}(x) = u(x) - u(x_0) + \epsilon \left(e^{-\alpha |x|^2} - e^{-\alpha}\right), \quad x \in \overline{B}_1
$$

- (a) Let $D = B_1 \setminus B_{1/2}$ and prove that $\Delta h_{\epsilon}(x) > 0$ for all $x \in D$.
- (b) Suppose that $u(x) < u(x_0)$ for all $x \in \overline{B}_1 \setminus \{x_0\}$. Prove that there exists $\epsilon_0 > 0$ such that

$$
\max_{x \in \overline{D}} h_{\epsilon}(x) = h_{\epsilon}(x_0), \quad \forall \epsilon \in (0, \epsilon_0),
$$

and then conclude that

$$
\frac{\partial u}{\partial \nu}(x_0) \ge 2\alpha \epsilon e^{-\alpha}
$$

where ν is the outward normal vector on ∂B_1 at x_0 .

3. For $B_1 = B_1(0) \subset \mathbb{R}^n$, suppose that the functions $a, f \in C(\overline{B}_1)$ and $g \in C(\partial B_1)$. Suppose also that $a(x) \geq 0$ for all $x \in B_1$. Prove that there is at most one solution $u \in C^2(B_1) \cap$ $C(\overline{B}_1)$ of

$$
\begin{cases}\n-a(x)\Delta u(x) + (1-|x|^2)u(x) &= f(x) \quad \text{for} \quad x \in B_1 \\
u(x) &= g(x) \quad \text{for} \quad x \in \partial B_1.\n\end{cases}
$$

Note: the function a may not be differentiable in B_1 .

4. Let $f \in C_0^{\infty}(\mathbb{R}^n)$, $b \in \mathbb{R}$ and consider

$$
u_t = \Delta u - x \cdot \nabla u + (b + \frac{1}{4}|x|^2)u \quad \text{on } \mathbb{R}^n \times (0, \infty)
$$

$$
u = f \quad \text{on } \mathbb{R}^n \times t = 0
$$

Prove that the equation has a solution $u \in C^{2,1}(\mathbb{R}^n \times (0,\infty)) \cap C^0(\mathbb{R}^n \times (0,\infty))$ satisfying: for some $c, \alpha, r, t_0 > 0$, $|u(x,r)| \leq c e^{-\alpha |x|^2}$ holds for all $|x| > r$, $0 < t < t_0$.

(Hint: Show that $g(x,t) = e^{\frac{-1}{4}|x|^2 - (b+\frac{n}{2})t}$ solves the system $g_t - \Delta g + (b+\frac{1}{4}|x|^2)g = 0$. What IVP does $v = gu$ solve?)

5. Suppose $\Omega \subset \mathbb{R}^n$ is open, bounded, $\partial \Omega \in C^{\infty}$, $T > 0$. Let $f \in C^1(\mathbb{R})$, $f(0) = f(1) = 0$, $f'(u) > 0$ for $u < 0$ and $u > 1$. Let also $g \in C^{0}(\Omega)$ with $0 \le g \le 1$ on $\overline{\Omega}$. For $\Omega_T = \Omega \times (0, T]$, suppose now that $u \in C^{2,1}(\Omega_T) \cap C^0(\overline{\Omega_T})$ is a solution of

$$
u_t = \Delta u + |\nabla u|^2 - u \quad \text{on } \Omega_T,
$$

\n
$$
\frac{\partial u}{\partial \nu} + f(u) = 0 \quad \text{on } \partial \Omega \times (0, T],
$$

\n
$$
u(x, 0) = g(x) \quad \text{for } x \in \Omega.
$$

- (a) Prove that $0 \le u \le 1$ on $\overline{\Omega_T}$.
- (b) If g is nonconstant on Ω , prove that $0 < u < 1$ on Ω_T .
- 6. Consider the initial value problem

$$
u_{tt}(x,t) - \Delta u(x,t) = q(x)e^t \quad (x) \in \mathbb{R}^3 \times \mathbb{R},
$$

$$
u(x,0) = 0, \quad x \in \mathbb{R}^3,
$$

$$
u_t(x,0) = 0, \quad x \in \mathbb{R}^3,
$$

where q is smooth with $q(x) = 0$ for $|x| \ge r > 0$ for some fixed r. Show that there is a function $v(x)$ such that for each $x \in \mathbb{R}^3$,

$$
u(x,t) - v(x)e^t \to 0
$$
, as $t \to \infty$.

Hint: Use for a fact (without proof) $v(x) = \frac{1}{(4\pi)^{3/2}} \int_0^\infty \int_{\mathbb{R}^3} \frac{e^{-\tau - \frac{|x-y|^2}{4\tau}}}{\tau^{3/2}} q(y) dy d\tau$ solves $-\Delta v + v(x) = q(x)$ for $x \in \mathbb{R}^3$. Prove that that for any $x \in \mathbb{R}^3$, $(1+|z|)(|v(x+z)| +$ $|\nabla v(x+z)|$) \rightarrow 0 as $|z| \rightarrow \infty$.

7. Suppose that Ω is a bounded C^1 -domain in \mathbb{R}^n , $f \in C(\overline{\Omega} \times [0,\infty))$, $\phi \in C^1(\overline{\Omega})$, $\psi \in C(\overline{\Omega})$ are given, and $u \in C^2(\overline{\Omega} \times [0,\infty))$ solves the initial/boundary-value problem

$$
u_{tt} - \Delta u = f \quad \text{in } \Omega \times (0, \infty),
$$

(IBVP)

$$
u(x, 0) = \phi(x), u_t(x, 0) = \psi(x), \quad x \in \Omega,
$$

$$
\frac{\partial u}{\partial \nu}(x, t) = 0, \quad \text{on } \partial\Omega \times (0, \infty).
$$

(a) Show that for any $t > 0$

$$
\left(\|u_t(\cdot,t)\|_{L^2(\Omega)}^2+\|\nabla u(\cdot,t)\|_{L^2(\Omega)}^2\right)^{1/2}\leq \left(\|\psi\|_{L^2(\Omega)}^2+\|\nabla\phi\|_{L^2(\Omega)}^2\right)^{1/2}+\int_0^t\|f(\cdot,s)\|_{L^2(\Omega)}ds.
$$

(b) Show that (IVBP) has at most one $C^2(\overline{\Omega}\times[0,\infty))$ solution.

PDE Preliminary Exam, August 2021

1. Suppose that q is a smooth function on $\mathbb R$ and consider the initial value problem

$$
e^x u_x + u_y = u
$$

$$
u(x, 0) = g(x).
$$

Write a formula for the solution. Find the domain of definition of the solution.

2. Let $B_2(0) \subset \mathbb{R}^n$, a ball centered at the origin with radius 2 and define the operator

$$
Lu := \Delta u + \mathbf{b} \cdot \nabla u + (4 - |x|^2)u,
$$

where $\mathbf{b} = (b_1, b_2, \dots, b_n)$ is a given vector of smooth functions on $\overline{B_2(0)}$. Suppose that for some $\lambda > 4$ the function $u \in C^2(\overline{B_2(0)})$ satisfies

(1)
$$
Lu = \lambda u \text{ in } B_2(0)
$$

$$
\frac{\partial u}{\partial \mathbf{n}} = 0 \text{ on } \partial B_2(0).
$$

(a) Show that for large $\eta > 0$ the function $v(x) = e^{-\eta |x|^2} - e^{-4\eta}$ satisfies the inequality

$$
Lv \geq \lambda v \quad \text{in } B_2(0) \setminus B_1(0)
$$

$$
v = 0 \quad \text{on } \partial B_2(0)
$$

$$
v > 0 \quad \text{on } \partial B_1(0).
$$

- (b) Prove that the solution u of (1) cannot attain its positive maximum in $B_2(0)$.
- (c) Prove that the solution u of (1) can have no positive maximum in $\overline{B_2(0)}$. [Hint: If $x_0 \in \partial B_2(0)$ such that $u(x_0) > 0$ is a maximum of u, then for appropriately chosen small ϵ work with the function $w = u + \epsilon v - u(x_0)$ on $B_2(0) \setminus B_1(0)$ where v is as in part $(a).$
- (d) Conclude that the solution u of (1) is identically 0.

3. Suppose that u is harmonic on \mathbb{R}^n and $B_1(0)$ represents the unit ball. For any $t > 0$ define

$$
I(t) = \int_{\partial B_1(0)} u(ty)u\left(\frac{y}{t}\right) dS_y.
$$

Show that I is a constant function.

4. Let α, γ be positive numbers, $\beta \in \mathbb{R}$ and $\mathbf{b} \in \mathbb{R}^n$ be given. Consider the Cauchy problem

(2)
$$
\alpha u_t + \mathbf{b} \cdot \nabla u + \beta u = \gamma \Delta u \quad \text{in } \mathbb{R}^n \times (0, \infty),
$$

$$
u(x, 0) = g(x), \quad \text{on } \mathbb{R}^n
$$

where q is compactly supported smooth function.

(a) Find $\kappa, \mu \in \mathbb{R}$ and $\mathbf{a} \in \mathbb{R}^n$ so that $v(x,t) = e^{\kappa t} u(\mu x + \mathbf{a}t, t)$ solves

$$
v_t = \Delta v \quad \text{in } \mathbb{R}^n \times (0, \infty),
$$

$$
v(x, 0) = g(\mu x) \quad \text{on } \mathbb{R}^n.
$$

- (b) Write down an explicit formula for a solution $u(x, t)$ of (2).
- 5. Let Ω be a bounded domain in \mathbb{R}^n , c be continuous in $\overline{\Omega} \times [0,T]$ with $c \geq -c_0$ for a nonnegative constant c_0 , and u_0 be continuous in Ω with $u_0 \geq 0$. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous and $xf(x) \leq 0$ for all $x \in \mathbb{R}$. Suppose that $u \in C^{2,1}(\Omega \times$ $(0, T] \cap C(\overline{\Omega} \times [0, T])$ is a solution of

$$
u_t - \Delta u + cu = uf(u) \quad \text{in } \Omega \times (0, T]
$$

$$
u(\cdot, 0) = u_0 \quad \text{on } \Omega
$$

$$
u = 0 \quad \text{on } \partial\Omega \times (0, T]
$$

Prove that

$$
0 \le u(x, t) \le e^{c_0 T} \sup_{\Omega} u_0
$$
, for all $(x, t) \in \Omega \times (0, T]$.

Hint: For the lower bound work on $w = u e^{-Mt}$ for a suitable choice of a constant M.

6. Let Ω be a bounded smooth domain. For given smooth functions $V(x)$ and $h(x)$ in $\overline{\Omega}$, consider the equation

$$
u_{tt} - \Delta u + V(x) u = h(x) u^{3}, \quad x \in \Omega, t > 0
$$

$$
u(x, 0) = f(x), u_{t}(x, 0) = g(x) \quad x \in \Omega
$$

$$
|x|^{2}u + \frac{\partial u}{\partial n} = 0, \quad x \in \partial\Omega.
$$

- (a) Show that if $V(x) \geq -\alpha$ for some $\alpha > 0$ and any $x \in \Omega$ and there is a solution $u \in C^2(\overline{\Omega} \times [0,\infty))$, then it is unique.
- (b) In the event $f = 0$ and $h \leq 0$, if $u \in C^2(\overline{\Omega} \times [0, \infty))$ is a solution, show that for all $t > 0$

$$
\int_{\Omega} \left(u_t^2 + |\nabla u|^2 + V(x) u^2 \right) dx \le \int_{\Omega} g^2 dx.
$$

7. Consider the equation

$$
u_{tt} - \Delta u = -u, \quad (x, y, t) \in \mathbb{R}^2 \times (0, \infty)
$$

$$
u(x, y, 0) = 0, \quad (x, y) \in \mathbb{R}^2
$$

$$
u_t(x, y, 0) = h(x, y), \quad (x, y) \in \mathbb{R}^2
$$

where h is a smooth function defined on \mathbb{R}^2 . Find a formula for the solution $u(x, y, t)$. Hint: Introduce $v(x, y, z, t) = \cos(z)u(x, y, t)$ defined on $\mathbb{R}^3 \times (0, \infty)$ and notice that $u(x, y, t) = v(x, y, 0, t).$

PDE Preliminary Exam, January 2021

1. Let $\Omega = \mathbb{R}^2 \setminus \{(0,0)\}\)$. Consider the first-order p.d.e.

$$
u_x^2 + u_y^2 = u^2
$$
 on Ω

satisfying $u = 1$ on $x^2 + y^2 = 1$. Prove that there exist exactly two solutions $u \in C^1(\Omega)$. Also find $\lim_{r \to 0} u(x, y), r = (x^2 + y^2)^{1/2}$.

2. Let $0 < R_1 < R_2$, $\Omega = \{x = (x_1, x_2) \in \mathbb{R}^2 : R_1 < |x| < R_2\}$, $|x|^2 =$ $x_1^2 + x_2^2$. Suppose $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfies $\Delta u \geq 0$ on Ω . Denote $M(r) = \sup u$ for $R_1 \le r \le R_2$. Prove $|x|=r$

$$
M(r) \leq [M(R_1)\ln(R_2/r) + M(R_2)\ln(r/R_1)] (\ln(R_2/R_1))^{-1}
$$

for $r \in [R_1, R_2]$.

Hint: Consider an auxiliary harmonic function $v(r)$.

3. Suppose $\Omega \subset \mathbb{R}^n$ is open and bounded. Assume $b_1, ..., b_n \in C^1(\overline{\Omega})$ and let $Lu = \Delta u + \sum_{i=1}^{n} b_i(x)u_{x_i}$. Suppose $u \in C^3(\overline{\Omega})$ satisfies $Lu = 0$ on Ω . Define $v = u^2$, $w = |Du|^2 = \sum_{k=1}^n u_{x_k}^2$ on $\overline{\Omega}$. Prove (a) $Lv = 2|Du|^2$ on Ω . (b) For some $M > 0$, $Lw \geq 2|H|^2 - M|Du|^2$ on Ω ; here the Hessian $H =$ $[u_{x_kx_i}], |H|^2 = \sum_{i,k=1}^n u_{x_kx_i}^2$. (c) For some $\lambda > 0$, $L(\lambda v + w) \ge 0$ on Ω , and for some $C > 0$

$$
||Du||_{L^{\infty}(\Omega)} \leq C(||Du||_{L^{\infty}(\partial\Omega)} + ||u||_{L^{\infty}(\partial\Omega)}).
$$

4. Let $\Omega \subset \mathbb{R}^n$ be open and bounded, $u_0 \in C^0(\overline{\Omega})$, $g \in C^0(\mathbb{R})$, $a(x,t) \in$ $C^1(\overline{\Omega}\times[0,T])$, $a\geq 0$ on $\overline{\Omega}\times[0,T]$. Assume $u\in C^2(\overline{\Omega}\times[0,T])$ solves

$$
u_t = \text{div}(a(x, t)\nabla u) + g(u)|\nabla u|
$$
 on $\Omega \times [0, T]$

with initial condition $u(x, 0) = u_0(x)$ for $x \in \Omega$, and boundary condition $u(x,t) = 0$ for $(x,t) \in \partial\Omega \times [0,T]$. Prove that $|u(x,t)| \leq \max |u_0|$ for all Ω $(x, t) \in \overline{\Omega} \times [0, T].$

5. Let u be the bounded solution to the initial value problem

$$
u_t = \Delta u \quad \text{on} \quad \mathbb{R}^n \times [0, \infty)
$$

with initial condition $u(\cdot, 0) = u_0$ where u_0 is bounded on \mathbb{R}^n and satisfies, for some $\alpha \in (0, 1)$ and $C > 0$, $|u_0(x) - u_0(y)| \le C|x-y|^{\alpha}$, $x, y \in \mathbb{R}^n$. Prove that there exists a constant $C_1 > 0$ such that $|u(x,t) - u(x,s)| \leq C_1 |t^{\alpha/2} - s^{\alpha/2}|$ for all $x \in \mathbb{R}^n$, $s, t \geq 0$.

6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that for every $R > 0$ there exists $N = N(R) > 0$ such that

$$
|f(s,t)| \le N(|s| + |t|)
$$
 for all $(s,t) \in \mathbb{R}^2$, $|s| + |t| \le R$.

Let u be a smooth compactly supported solution of the nonlinear wave equation

$$
u_{tt} - \Delta u + f(u, u_t) = 0 \quad \text{on } \mathbb{R}^3 \times (0, \infty).
$$

Assune that there is $x_0 \in \mathbb{R}^3$ and $t_0 > 0$ such that

$$
u(x, 0) = u_t(x, 0) = 0
$$
 for all $x \in B(x_0, t_0)$

 $(B(x_0, t_0))$ is the open ball in \mathbb{R}^3 with radius t_0 and centered at x_0). Prove that $u = 0$ in the cone $K(x_0, t_0)$ defined by

$$
K(x_0, t_0) = \{(x, t) \in \mathbb{R}^4 : 0 \le t \le t_0, \ |x - x_0| \le t_0 - t\}.
$$

Hint: One may consider the energy function $e(t) = \frac{1}{2} \int_{B(x_0,t_0-t)} (u_t^2 + |\nabla u|^2 +$ u^2) dx.

7. Let $g : \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = 1$ if $|x| < 1$, $g(x) = 0$ if $|x| \ge 1$. Use d' Alembert's formula to find the solution u of the wave equation

$$
u_{tt} - u_{xx} = 0 \quad \text{on } \mathbb{R} \times (0, \infty)
$$

with $u(x, 0) = x^2$ and $u_t(x, 0) = g(x)$, $x \in \mathbb{R}$. Show that u is not differentiable with respect to the variable t at $(x_0, t_0) = (0, 1)$.

PDE Preliminary Exam, August 2020

1. Let $\Omega = \{(x, t) : x > 0, t > 0\}$. Assume $f \in C^{\infty}(\overline{\Omega})$, f has bounded support and $f = 0$ on $\{t = 0\}$. Suppose $u \in C^2(\overline{\Omega})$ is a solution of

$$
u_t + u_x + u = f(x, t)
$$
 on Ω ,
 $u = 0$ on $\{x = 0\} \cup \{t = 0\}$.

(a) For each $t > 0$, prove that $u(\cdot, t)$ has bounded support.

(b) For each $t > 0$, prove

$$
\int_0^\infty u_t^2 \, dx \le \int_0^t e^{s-t} \int_0^\infty f_t^2(x,s) \, dx \, ds.
$$

(c) Prove there exists $K > 0$ such that $\int_0^\infty u_t^2 dx \leq Ke^{-t}$ for all $t > 0$.

2. Let $a > 0$, $\Omega = (-1, 1) \times (-a, a) \subset \mathbb{R}^2$. Suppose $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ is a solution of

 $\Delta u = -1$ on Ω , $u = 0$ on $\partial \Omega$.

Using the functions $v(x,y) = (1-x^2)(a^2-y^2), w(x,y) = 2-x^2-\frac{y^2}{a^2}$ $rac{y^2}{a^2}$ (or constant multiples of them), find positive bounds $C_1(a)$ and $C_2(a)$ such that

$$
C_1(a) \le u(0,0) \le C_2(a).
$$

3. Suppose $\Omega \subset \mathbb{R}^n$ $(n \geq 3)$ is open, bounded with C^{∞} -smooth boundary $\partial Ω$. Let $u \in C^2(Ω) ∩ C^0(\overline{Ω})$ be a solution of

$$
-\Delta(u^3) = u \text{ on } \Omega, \quad u = 0 \text{ on } \partial\Omega.
$$

(a) Using the Green's function show there exists a constant $C > 0$ depending only on Ω , but not on the solution, such that $\int_{\Omega} |u(x)|^3 dx \leq C$, and sup Ω $|u| \leq$ C.

(b) Show that, if $u \geq 0$ on Ω , then either, $u \equiv 0$ on Ω or $u > 0$ on Ω . (c) Let v be the eigenfunction corresponding to the first (least) eigenvalue λ of $-\Delta v = \lambda v$ on Ω , $v = 0$ on $\partial\Omega$ (recall $v > 0$ on Ω). Show that, if $u \geq v$, then $u^3 \geq \frac{1}{\lambda}$ $\frac{1}{\lambda}v.$

(d) Assuming also $u^3 \in C^1(\overline{\Omega})$, prove $\int_{\Omega} |\nabla(u^2)|^2 dx = C_1 \int_{\Omega} u^2 dx \le C_2$ where C_1 , C_2 depend only on Ω , not on u .

4. Let $u_0 : \mathbb{R}^n \to \mathbb{R}$ be smooth and compactly supported, and

$$
m = \int_{\mathbb{R}^n} u_0(y) \ dy.
$$

Let u be a solution of the Cauchy problem

$$
u_t - \Delta u = 0 \text{ on } \mathbb{R}^n \times (0, \infty),
$$

$$
u(x, 0) = u_0(x) \quad x \in \mathbb{R}^n,
$$

with $|u(x,t)| \leq Ae^{a|x|^2}$ for some fixed $A, a > 0$ and all $(x,t) \in \mathbb{R}^n \times (0, \infty)$. Prove that there is a constant N depending only on n such that

$$
\sup_{x \in \mathbb{R}^n} |u(x,t) - m \Phi(x,t)| \le \frac{N}{t^{\frac{n+1}{2}}} \int_{\mathbb{R}^n} |y| |u_0(y)| dy, \text{ for all } t > 0,
$$

where $\Phi(x,t) = \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x|^2}{4t}}$.

5. Let u be a smooth function on $\overline{B}_1 \times [0,1]$ that satisfies the equation

$$
a_0 u_t - b_0 \Delta u + u = 1
$$
 on $B_1 \times (0, 1)$,
\n $u = 1$ on $\partial B_1 \times (0, 1)$,
\n $u(x, 0) = 1$ $x \in B_1$,

where $a_0, b_0 : \overline{B}_1 \times [0, 1] \to [0, \infty)$ are given continuous functions $(B_1 = \text{unit}$ ball in \mathbb{R}^n). Prove that $u \leq 1$ on $\overline{B}_1 \times [0,1]$.

6. Assume that $\Omega \subset \mathbb{R}^n$ is an open, bounded set with C^{∞} -smooth boundary $\partial Ω$. Let T > 0, $Ω_T = Ω × (0, T]$. Suppose $a ∈ C¹(\overline{Ω})$, $a > 0$ on $\overline{Ω}$, $φ, ψ ∈$ $C^2(\overline{\Omega})$. Suppose $u \in C^2(\overline{\Omega_T})$ is a solution of

$$
u_{tt} - a(x)\Delta u = u^3 \text{ on } \Omega_{\text{T}},
$$

$$
\frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega \times [0, \text{T}],
$$

$$
u = \phi, \quad u_t = \psi \text{ on } \Omega \times \{\text{t} = 0\}.
$$

Prove that u is unique.

7. Assume $\phi \in C^2(\mathbb{R})$ and $h, \psi \in C^1(\mathbb{R})$. Consider the initial-value problem with $u \in C^2(\mathbb{R} \times [0, \infty))$

$$
u_{tt} - u_{xx} = h(x - t) \quad \text{on} \quad \mathbb{R} \times [0, \infty), \tag{1}
$$

$$
u = \phi(x), \quad u_t = \psi(x) \quad \text{at} \quad t = 0, \quad x \in \mathbb{R}.\tag{2}
$$

(a) Find a solution of the p.d.e. in (1).

(b) Find a solution of (1) and (2).

UTK PDE Prelim Exam, Spring 2020

Question 1: Let $g : \mathbb{R} \to \mathbb{R}$ be a smooth function. Find solutions of the following initial-value problem in \mathbb{R}^2

$$
u_x + (1 + x^2)u_y - u = 0
$$
 with $u(x, \frac{1}{3}x^3) = g(x)$.

Question 2: Let $h : \mathbb{R} \to \mathbb{R}$ be a smooth function. Consider the following equation in \mathbb{R}^2

$$
xu_x + yu_y = 2u \quad \text{with} \quad u(x,0) = h(x).
$$

- (a) Check that the line $\{y = 0\}$ is characteristic at each point and find all h satisfying the compatibility condition on $\{y=0\}.$
- (b) For h as compatible in (a), solve the PDE.

Question 3: Let ϕ be smooth, compactly supported function defined in the unit ball $B_1 \subset \mathbb{R}^n$ such that $\phi = 1$ on $B_{1/2}$, where $B_{1/2} \subset \mathbb{R}^n$ is the ball of radius $1/2$ centered at the origin. Suppose that u is harmonic in B_1 .

(a) Prove that there is $\alpha > 0$ depending only on n and sup $|\Delta \phi|$ and sup $|\nabla \phi|$ such that

$$
\Delta(\phi^2|\nabla u|^2 + \alpha u^2) \ge 0 \quad \text{in} \quad B_1.
$$

(b) Use part (a) and the maximum principle to conclude that there is a constant $C > 0$ depending only on n, ϕ such that

$$
\sup_{B_{1/2}} |\nabla u| \le C \sup_{\partial B_1} |u|.
$$

Question 4: Let $B_1 \subset \mathbb{R}^2$ be the unit ball with boundary ∂B_1 . Let $f, c \in C(\overline{B}_1)$ and $g \in C(\partial B_1)$. Assume that $c(x, y) > 0$ for all $(x, y) \in B_1$. Prove that there exists at most one C^2 -solution to the following equation

$$
\begin{cases}\n-x^2 u_{xx} - y^2 u_{yy} + c(x, y)u &= f \text{ in } B_1 \\
u &= g \text{ on } \partial B_1.\n\end{cases}
$$

Question 5: Let a_0 be a smooth and compactly supported function defined on \mathbb{R}^n and $p_0 \in (1,\infty)$. Consider the following Cauchy problem

$$
\begin{cases}\n u_t - \Delta u = |u|^{p_0 - 1}u & \text{in } \mathbb{R}^n \times (0, \infty) \\
 u(x, 0) = a_0(x) & x \in \mathbb{R}^n.\n\end{cases}
$$
\n(1)

Define the scaling

$$
u_{\lambda}(x,t) = \lambda^{\beta} u(\lambda x, \lambda^{2} t), \quad \lambda > 0.
$$

- (a) Find β (possibly depending on n, p_0) so that if u is a solution of (1), then u_λ is also a solution (1) (with appropriate scaled initial data a_0^{λ}).
- (b) Recall that the L^p -norm is defined by

$$
||u(\cdot,t)||_{L^p(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} |u(x,t)|^p dx\right)^{\frac{1}{p}}, \quad p \in [1,\infty).
$$

For β found in a), find p so that if u is a solution of (1) then

$$
||u(\cdot,\lambda^2 t)||_{L^p(\mathbb{R}^n)}=||u_\lambda(\cdot,t)||_{L^p(\mathbb{R}^n)}
$$

for all $\lambda > 0$ and for all $t > 0$.

Question 6: Let us denote $\mathbb{R}^2_+ = \mathbb{R} \times (0, \infty)$ and $B_1^+ = B_1 \cap \mathbb{R}^2_+$, where B_1 is the unit ball in \mathbb{R}^2 . Assume that $u = u(x, y, t)$ is a smooth function defined on $\overline{B_1}^+ \times [0, 1]$ and satisfying

 $u_t - y^{\alpha}[u_{xx} + u_{yy}] + u_y + u \le 0$ for $(x, y) \in B_1^+$ and $t \in (0, 1)$,

where $\alpha > 0$ is a given number. Assume that $u(x, y, 0) \leq 0$, and that $u \leq 0$ on $(\partial B_1 \cap \mathbb{R}^2_+) \times (0, 1)$, where ∂B_1 denotes the boundary of B_1 . Prove that

$$
u\leq 0\quad\text{on}\quad \overline{B}_1^+\times[0,1].
$$

Note: We are not given any information on the boundary data on the part of the boundary where $y=0.$

Question 7: Let $u_1(x)$ and $u_2(x)$ be smooth functions whose supports are in the unit ball $B_1 \subset \mathbb{R}^n$. For each $x_0 \in \mathbb{R}^n$ and each $t_0 > 0$, let $C(x_0, t_0)$ be the cone defined by

$$
C(x_0, t_0) = \{(x, t) : 0 \le t \le t_0, \quad |x - x_0| \le t_0 - t\}.
$$

Assume that $u \in C^2$ is the solution of the equation

$$
u_{tt} - \Delta u = 0 \quad \text{in} \quad \mathbb{R}^n \times (0, \infty)
$$

with given initial data $u(x, 0) = u_1(x)$ and $u_t(x, 0) = u_2(x)$.

Give the proof for the finite propagation speed result for the wave equation, namely $u = 0$ on $C(x_0, t_0)$ for all $x_0 \in \mathbb{R}^n$ with $|x_0| > 1$ and $t_0 = |x_0| - 1$.

Question 8: Let u be a smooth solution of the equation

$$
u_{tt} - \Delta u = f \quad \text{on} \quad \mathbb{R}^3 \times (0, \infty)
$$

with $u(\cdot, 0) = u_t(\cdot, 0) = 0$. Also, let v be a smooth solution of the equation

$$
v_{tt} - \Delta v = g \quad \text{on} \quad \mathbb{R}^3 \times (0, \infty)
$$

with $v(\cdot,0) = v_t(\cdot,0) = 0$. Assume that $|f|^2 \leq g$. Prove that $2u(x,t)^2 \leq t^2v(x,t)$ for all $x \in \mathbb{R}^3$ and $t > 0$.

PDE Prelim Exam, Fall 2019

Question 1: Solve the Cauchy problem

$$
\begin{cases} xu_x - yu_y = u - y, & x > 0, y > 0, \\ u(y^2, y) = y, & y > 0. \end{cases}
$$

Question 2: Let a, R be positive numbers and consider the equation

$$
\begin{cases}\n u_t + au_x &= f(x, t), & 0 < x < R, \quad t > 0, \\
 u(0, t) &= 0, & t > 0, \\
 u(x, 0) &= 0, & 0 < x < R.\n\end{cases}
$$

Prove that for each solution $u(x,t) \in C^1((0,R) \times (0,\infty))$ we have

$$
\int_0^R u^2(x,t)dx \le e^t \int_0^t \int_0^R f^2(x,s)dxds, \quad \forall \ t > 0.
$$

Question 3: Let $r > 0$ and let f, g be continuous functions defined on $\overline{B}_r(0)$. Let u be in $C^2(B_r(0)) \cap C(\overline{B}_r(0))$ be the solution of the equation

$$
\begin{cases}\n-\Delta u &= f, & B_r(0), \\
u &= g, & \partial B_r(0).\n\end{cases}
$$

Prove that

$$
u(0) = \int_{\partial B_r(0)} g(x) dS(x) + \frac{1}{n(n-2)\alpha(n)} \int_{B_r(0)} \left[\frac{1}{|x|^{n-2}} - \frac{1}{r^{n-2}} \right] f(x) dx.
$$

Hint: Consider

$$
\phi(s) = \int_{\partial B_s(0)} u(y) dS, \quad 0 < s \le r.
$$

Compute $\phi'(s)$ and then find $\phi(0)$.

Question 4: Let $R > 0$ and we denote B_R the ball of radius R centered at the origin in \mathbb{R}^n . Let c, f be continuous functions on \overline{B}_R . Assume that $c \leq 0$ on \overline{B}_R , and also assume that $u \in C^2(B_R) \cap C(\overline{B}_R)$ satsifies

$$
\begin{cases} \Delta u + cu &= f \text{ in } B_R, \\ u &= 0 \text{ on } \partial B_R. \end{cases}
$$

Prove that

$$
\sup_{B_R}|u| \leq \frac{R^2}{2n}\sup_{B_R}|f|
$$

Hint: Let $A = \sup_{B_R} |f|$ and

$$
v(x) = \frac{AR^2}{2n}(R^2 - |x|^2)
$$

Use the maximum principle to prove that $|u(x)| \le v(x)$ on B_R .

Question 5: Let u_0 be the smooth and compactly supported function defined on \mathbb{R}^n . Assume that u is a solution of the Cauchy problem

$$
\begin{cases}\n u_t - \Delta u = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\
 u(x, 0) = u_0(x) & x \in \mathbb{R}^n.\n\end{cases}
$$

Let $p, q \in (1, \infty)$ with $p \geq q$ and consider the inequality

$$
||u(\cdot,t)||_{L^p(\mathbb{R}^n)} \leq \frac{N}{t^{\alpha}}||u_0||_{L^q(\mathbb{R}^n)}, \quad t > 0
$$

with $N = N(n, p, q)$ and $\alpha = \alpha(n, p, q)$, where we denote

$$
||u(\cdot,t)||_{L^p(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} |u(x,t)|^p dx\right)^{\frac{1}{p}}
$$

and similar notation is also used for $||u_0||_{L^q(\mathbb{R}^n)}$.

Use the scaling property of the heat equation to find the number α (certainly, show all of the work).

Question 6: Assume that u is a smooth, bounded solution of the equation

$$
\begin{cases}\nu_t - \Delta u = u(1-u) & \text{in} & B_1 \times (0,1] \\
u = 0 & \text{on} & \partial B_1 \times (0,1] \\
u = \frac{1}{2} & \text{on} & B_1 \times \{0\}.\n\end{cases}
$$

Prove that $0 \le u \le 1$.

Question 7: Let φ be a smooth, compactly supported function on \mathbb{R}^2 . Assume that u is a smooth solution of

$$
\begin{cases}\nu_{tt} - \Delta u = 0 & \text{in } \mathbb{R}^2 \times (0, \infty), \\
u(\cdot, 0) = 0 & \text{on } \mathbb{R}^2, \\
u_t(\cdot, 0) = \varphi & \text{on } \mathbb{R}^2.\n\end{cases}
$$

Prove that

$$
|u(x,t)| \leq \frac{1}{2\sqrt{t}} \Big(\|\varphi\|_{L^1(\mathbb{R}^2)} + \|\nabla \varphi\|_{L^1(\mathbb{R}^2)} \Big), \quad \forall \ t > 1.
$$

Question 8: Assume that $u \in C^2(\mathbb{R}^n \times [0,\infty))$ is a solution of the wave equation

$$
u_{tt} = \Delta u \quad \text{in} \quad \mathbb{R}^n \times (0, \infty).
$$

Let

$$
E(t) = \frac{1}{2} \int_{B_{1-t}} \left[|u_t(x,t)|^2 + |\nabla u(x,t)|^2 \right] dx \quad \text{for} \quad t \in (0,1),
$$

where $\nabla u = (u_{x_1}, u_{x_2}, \dots, u_{x_n})$ and B_r denotes the ball in \mathbb{R}^n with radius $r > 0$ and centered at the origin.

(a) Prove that

$$
E'(t) = \int_{B_{1-t}} \left[u_t(x,t)u_{tt}(x,t) + \sum_{i=1}^n u_{x_i} u_{x_i t} \right] dx
$$

$$
- \frac{1}{2} \int_{\partial B_{1-t}} \left[u_t^2(x,t) + |\nabla u(x,t)|^2 \right] dS(x).
$$

(b) Use the note that

$$
\[u_{x_i}u_t\]_{x_i} = u_{x_i}u_{x_it} + u_{x_ix_i}u_{tt}.
$$

to prove that $E'(t) \leq 0$. Then, conclude also that $u = 0$ on $\{(x, t) : |x| \leq 1 - t, 0 \leq t \leq 1\}$ if $u(x, 0) = u_t(x, 0) = 0$ for $x \in B_1$.

PDE Preliminary Exam, August 2018 - UTK

Question 1: For $x > 0$, consider the equation:

$$
\begin{cases}uu_x+2xu_y=0\text{ in }\mathbb{R}^2\\u(x,0)=\frac{1}{x}\text{ for }x>0.\end{cases}
$$

For $t_0, t_1 > 0$ with $t_0 \neq t_1$, let C_0 be the characteristic passing through the point $(t_0, 0, 1/t_0)$ and let C_1 be the characteristic passing through $(t_1, 0, 1/t_1)$. Determine whether the projections of C_0 and C_1 onto the x-y plane intersect for some $y > 0$ (i.e., whether a shock develops), and if they do, find the point (x, y) of intersection.

Question 2: Given a bounded domain Ω in \mathbb{R}^n , let h be the solution to

$$
\Delta h = -1 \quad \text{in} \quad \Omega \,, \qquad h = 0 \quad \text{on} \quad \partial \Omega \,.
$$

Let $a > 0$ be a constant.

Prove: If there exists a function $u > 0$ that satisfies the equation

$$
\Delta u = \frac{1}{u} \quad \text{in} \quad \Omega \,, \qquad u \equiv a \quad \text{on} \quad \partial \Omega \,,
$$

then $a \geq \sqrt{\max_{\overline{\Omega}} h}$.

Hint: Prove $u \leq a$. Then prove a better upper bound for u.

Question 3:

(a) Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous, bounded, and even (that is, $f(-x) = f(x)$ for all $x \in \mathbb{R}$). Suppose $u = u(x, t) \in C_1^2(\mathbb{R}^2_+) \cap C(\overline{\mathbb{R}^2_+})$ satisfies

$$
\begin{cases}\n u_t = u_{xx} & \text{for } x \in \mathbb{R}, 0 < t < \infty, \\
 u(x, 0) = f(x) & \text{for } x \in \mathbb{R}, \\
 |u(x, t)| \le Ke^{a|x|^2} & \text{for } x \in \mathbb{R}, 0 < t < \infty,\n\end{cases}
$$

for some positive constants K and a. Prove that for each $t > 0$, $u(x, t)$ is an even function of x: i.e., $u(-x,t) = u(x,t)$ for all $t > 0$.

(b) Assume $f:[0,\infty)\to\mathbb{R}$ is continuous and bounded. For $x\geq 0$ and $t\geq 0$, suppose $u = u(x, t) \in C^2([0, \infty) \times [0, \infty))$ satisfies

$$
\begin{cases}\n u_t = u_{xx} & \text{for } 0 < x < \infty, 0 < t < \infty, \\
 u(x, 0) = f(x) & \text{for } 0 \le x < \infty, \\
 u_x(0, t) = 0 & \text{for } 0 < t < \infty \\
 |u(x, t)| \le Ke^{a|x|^2} & \text{for } x \in \mathbb{R}_+, 0 < t < \infty,\n\end{cases}
$$

for some positive constants K and a. Here $u_x(0,t)$ is interpreted as the x-derivative of u from the right at $(0, t)$. Find a function $H = H(x, y, t)$ such that

$$
u(x,t)=\int_0^\infty H(x,y,t)f(y)\,dy,
$$

and justify your answer.

1g. 2 - DE
Aug. 2018

Question 4: Consider the nonlinear PDE

$$
u_{tt}-\Delta u+u^3=0, \quad x\in\mathbb{R}^3, \quad t\in\mathbb{R}.
$$

1. Assume that u is smooth and has compact support in x for each t . What is the energy expression

$$
E(t) = \int_{\mathbb{R}^3} q(u, u_t, \nabla u) dx
$$

which is conserved, i.e., $E'(t) = 0$?

2. For any $\alpha > 0$, and $x_0 \in \mathbb{R}^3$, denote by

$$
E_{\alpha}(t)=\int_{B_{\alpha}(x_0)}q(u,u_t,\nabla u)dx
$$

the energy contained in the ball of radius $\alpha > 0$ centered at x_0 . Show that for any $T>0$ and $a>0$,

$$
E_a(T) \leq E_{a+T}(0)
$$

 \mathbf{r}

Hint: Work with the 'energy'

$$
\tilde{E}(t):=\int_{B_{T+a-t}(x_0)}q(u,u_t,\nabla u)dx
$$

3. Given $a > 0$, show that if $u(x, 0) = u_t(x, 0) = 0$ for $|x| > a$, then $u(x,t) = 0$ for all $|x| \geq a+t, t \geq 0.$

Question 5: Let B be the unit ball in \mathbb{R}^n and let $u \in C^{\infty}(\bar{B} \times [0,\infty))$ satisfy

$$
u_t - \Delta u + u^{1/2} = 0 \quad \text{on } B \times (0, \infty)
$$

$$
0 \le u \qquad \text{on } B \times (0, \infty)
$$

$$
u = 0 \qquad \text{on } \partial B \times (0, \infty).
$$

(a) Show that, if $u|_{t=t_0} \equiv 0$, then $u \equiv 0$ for $t > t_0$ as well.

(b) Prove that there is a number T depending only on $M := \max u|_{t=0}$ such that $u \equiv 0$ on $B \times (T, \infty).$

Hint: Let v be the solution of the IVP,

$$
\frac{dv}{dt} + v^{\frac{1}{2}} = 0, \quad v(0) = M,
$$

and consider the function $w = v - u$.

Question 6:

(a) Find a C^1 solution in $\mathbb{R}^+ \times \mathbb{R} \ni (x, y)$ to:

$$
x^2u_x - y^2u_y = u^2 \text{ for } x > 0, y \in \mathbb{R}, \qquad u(1, y) = \frac{1}{1 + y^2}
$$

(b) Explain why this solution is not unique as a solution in $C^1(\mathbb{R}^+ \times \mathbb{R})$, but its restriction to some appropriate open set U containing the initial curve $\{1\} \times \mathbb{R}$ is unique in $C^1(U)$.

Question 7: Suppose $f, g \in C^{\infty}(\mathbb{R}^n)$. Suppose $u \in C^2(\mathbb{R}^n \times [0, \infty))$ satisfies

$$
u_{tt} = \Delta u, \qquad (x, t) \in \mathbb{R}^n \times (0, \infty),
$$

\n
$$
u(x, 0) = f(x), \quad x \in \mathbb{R}^n,
$$

\n
$$
u_t(x, 0) = g(x), \quad x \in \mathbb{R}^n.
$$

Prove that

$$
\int_{\mathbb{R}^n} u(x,t) \, dx = C_1 t + C_2,
$$

for all $t > 0$, where $C_1 = \int_{\mathbb{R}^n} g(x) dx$ and $C_2 = \int_{\mathbb{R}^n} f(x) dx$, under either of the two conditions:

- (i) $n = 3$, $\int_{\mathbb{R}^3} |f(x)| dx < \infty$, $\int_{\mathbb{R}^3} |\nabla f(x)| dx < \infty$, and $\int_{\mathbb{R}^3} |g(x)| dx < \infty$; or
- (ii) $n \in \mathbb{N}$, and f and g have compact support.

Question 8: Let $u \in C^2(\mathbb{R}^n)$ be a subharmonic function and consider the spherical averages

$$
v(r):=\int_{\partial B_r(0)} u(x)\,dS(x)\;.
$$

(a) Show that the function $x \mapsto v(|x|)$ is also subharmonic in \mathbb{R}^n , and that $r \mapsto r^{n-1}v'(r)$ is monotonic.

(b) Now let $n = 2$. Prove that, if u is also bounded, then u is a constant.

PDE Preliminary Exam, January 2018

Instruction:

Solve all eight problems. Begin your answer to each question on a separate sheet. Explain all your steps.

1. A smooth function u defined in the first quadrant on the xy -plane satisfies

$$
-y\frac{\partial u}{\partial x} + x\frac{\partial u}{\partial y} = -2u, \qquad u(x,0) = x.
$$

 \bullet

Determine $u(0, y)$.

2. Suppose that $u(x, t)$ is a smooth solution of

$$
\begin{cases} u_t + uu_x = 0 & \text{for } x \in \mathbb{R}, \ t > 0 \\ u(x, 0) = f(x), & \text{for } x \in \mathbb{R} \end{cases}
$$

Assume that f is a C^1 function such that

$$
f(x) = \begin{cases} 0 & \text{for } x < -1 \\ 1 & \text{for } x > 1 \end{cases}
$$
 and $f'(x) > 0$, for $|x| < 1$.

- (a) Sketch the characteristics emanating from $(x_0, 0)$ for several values of $x_0 < -1, x_0 \in$ $(-1, 1)$, and $x_0 > 1$.
- (b) Show that for $t > 0$,

$$
\lim_{r \to \infty} u(rx, rt) = \begin{cases} 0 & \text{for } x < 0 \\ x/t & \text{for } 0 < x < t \\ 1 & \text{for } x > t \end{cases}
$$

3. Suppose that for all $r > 2$, there exists a function $u_r : \mathbb{R}^3 \to \mathbb{R}$ that is continuous and satisfies

$$
\begin{cases}\n\Delta u = 0 & \text{in } B_r(0) \setminus \overline{B_1(0)} \\
u(x) = 0 & \text{for } |x| \ge r \\
u(x) = 1, & \text{for } x \in \overline{B_1(0)}.\n\end{cases}
$$

(a) Show that for all $x \in \mathbb{R}^3$, if $2 < r_1 \le r_2$, then

$$
0 \le u_{r_1}(x) \le u_{r_2}(x) \le 1.
$$

- (b) Show that
	- i. $u(x) = \lim_{r \to \infty} u_r(x)$ is harmonic on $\mathbb{R}^3 \setminus \overline{B_1(0)}$ ii. $\lim_{|x|\to\infty}u(x)=0.$ [Hint: noting that $\frac{1}{|x|}$ is harmonic, study $u_r(x) - \frac{1}{|x|}$ over an annulus.]
- 4. Denote by $\mathbb{R}^n_+ = \{ \mathbf{x} = (\mathbf{x}', x_n) : x_n > 0 \}, \ \Sigma = \{ \mathbf{x} = (\mathbf{x}', x_n) : x_n = 0 \}.$ Suppose that u is harmonic in \mathbb{R}^n_+ , continuous on $\mathbb{R}^n_+ \cup \Sigma$, and $u = 0$ on Σ . Define

$$
\overline{u}(x',x_n):=\begin{cases}u(x',x_n) & \text{for } x_n \geq 0, \\ -u(x',-x_n) & \text{for } x_n < 0.\end{cases}
$$

Then show that \overline{u} is harmonic in \mathbb{R}^n .

5. Let $\Omega \subseteq \mathbb{R}^n$ be a C^{∞} bounded domain. Assume that $u_0 \in C^{\infty}(\overline{\Omega})$, $a \in C([0,\infty))$, and $\lim_{t\to\infty} a(t) \leq 0$. Suppose also $u \in C^2(\overline{\Omega} \times [0,\infty))$ satisfies

$$
\begin{cases}\n u_t = \Delta u + a(t)u & \text{on } \Omega \times (0, \infty), \\
 u = 0 & \text{on } \partial\Omega \times (0, \infty), \\
 u = u_0 & \Omega \times \{t = 0\}\n\end{cases}
$$

Prove that

$$
\lim_{t\to\infty}\int_{\Omega}u^2(x,t)dx=0
$$

(Hint: Use the Energy method. You may apply Poincaré's inequality.)

6. Let $\Omega \subseteq \mathbb{R}^n$ be a C^{∞} bounded domain, $T > 0$, and $\mathbf{a} \in \mathbb{R}^n$ is a given vector. Suppose $u \in C^2(\overline{\Omega} \times [0,T])$ satisfies

$$
\begin{cases} u_t = \Delta u + \mathbf{a} \cdot \nabla u + u^2 & \text{on } \Omega \times (0, T], \\ u = 0 & \text{on } \partial \Omega \times (0, T], \\ u = 0 & \Omega \times \{t = 0\}. \end{cases}
$$

Prove that

\n- (a)
$$
u \geq 0
$$
, on $\Omega \times (0, T]$,
\n- (b) $u_t \geq 0$ on $\Omega \times (0, T]$.
\n- (Hint: What equation does u_t solve?)
\n

- $\overline{3}$
- 7. Let $\Omega \subseteq \mathbb{R}^n$ be a C^{∞} bounded domain and let $T > 0$. Suppose $V = V(x)$ and $h = h(x)$ are continuous functions on $\overline{\Omega}$, with $V(x) \ge 0$. Suppose $u = u(x, t) \in C^2(\overline{\Omega} \times [0, T]),$ where $x \in \Omega$ and $t \in [0, T]$, and u satisfies

$$
\begin{cases}\n u_{tt} - \Delta u + V(x)u = h(x) & \text{on } \Omega \times (0, T); \\
 u(x, 0) = 0 & \text{on } \Omega; \\
 u_t(x, 0) = 0 & \text{on } \Omega; \\
 u = -D_{\vec{n}}u & \text{on } \partial\Omega \times (0, T),\n\end{cases}
$$

where $D_{\vec{n}}u$ is the outward normal derivative of u on $\partial\Omega$.

(a) Prove that $\int_{\Omega} h(x)u(x,t) dx \ge 0$ for all $t \ge 0$.

Hint: Consider

$$
E(t)=\frac{1}{2}\int_{\Omega}u_t^2+|\nabla u|^2+Vu^2-2hu\,dx+\frac{1}{2}\int_{\partial\Omega}u^2\,d\sigma,
$$

where $d\sigma$ is surface measure on $\partial\Omega$.

(b) Suppose in addition that $V(x) \geq A$ and $|h(x)| \leq B$, for all $x \in \Omega$, for some constants $A > 0$ and $B > 0$. Prove that

$$
\int_{\Omega} |u(x,t)| dx \leq \frac{2B|\Omega|}{A},
$$

for all $t \geq 0$, where $|\Omega| = \int_{\Omega} dx$ is the measure of Ω .

Hint: Start by writing $\int_{\Omega}|u|dx=\int_{\Omega}\frac{\sqrt{V}|u|}{\sqrt{V}}dx$, and apply Cauchy Schwartz.

8. Suppose $u \in C^2(\mathbb{R}^n \times [0, \infty))$ is a solution of

$$
\begin{cases}\n u_{tt} = \Delta u & \text{on } \mathbb{R}^n \times (0, \infty); \\
 u(x, 0) = f(x) & \text{on } \mathbb{R}^n; \\
 u_t(x, 0) = g(x) & \text{on } \mathbb{R}^n,\n\end{cases}
$$

where $f, g \in C^{\infty}(\mathbb{R}^n)$ have compact support: there exists $R > 0$ such that $f(x) = 0$ and $g(x) = 0$ if $|x| > R$. Consider the statement:

(S): For all such f, g and R, and all $x_0 \in \mathbb{R}^n$, there exists $T = T(x_0, R) > 0$ such that $u(x_0, t) = 0$ for all $t > T$.

- (a) Is (S) true if $n = 1$? Either prove (S) or give an example showing that S fails.
- (b) Is (S) true if $n = 3$? Either prove (S) or give an example showing that S fails.

PDE Preliminary Exam, August 2017

1. For a given continuous function f , solve the initial-boundary value problem

$$
\begin{cases} u_t + (x+1)^2 u_x = x, & \text{for } x > 0, t > 0 \\ u(x, 0) = f(x), & x > 0 \\ u(0, t) = -1 + t, & t > 0. \end{cases}
$$

Find a condition on f so that the solution $u(x, t)$ is continuous on the first quadrant of \mathbb{R}^2 , i.e. the region $\{(x,t) \in \mathbb{R}^2 : x > 0, t > 0\}.$

2. Determine an integral (weak) solution to the Burger's equation

$$
u_t + (\frac{1}{2}u^2)_x = 0
$$
, $(x, t) \in \mathbb{R} \times (0, \infty)$

with initial data

$$
u(x,0) = \begin{cases} 1 & \text{if } x < 0 \\ 1 - x & \text{if } 0 < x < 1 \\ 0 & \text{if } x > 1. \end{cases}
$$

3. Let $n \geq 2$, and let $\Omega \subseteq \mathbb{R}^n$ be a bounded domain with C^{∞} -smooth boundary. Suppose p and q are non-negative continuous functions defined on Ω , satisfying $p(x) + q(x) > 0$ (strict inequality) for all $x \in \Omega$. Find all functions $u \in C^2(\overline{\Omega})$ satisfying

$$
\begin{cases} \Delta u = pu^3 + qu & \text{on } \Omega, \\ \frac{\partial u}{\partial \mathbf{n}} = 0 & \text{on } \partial \Omega, \end{cases}
$$

where $\mathbf{n}(x)$ is the outward unit normal to Ω at $x \in \partial\Omega$.

4. Suppose u is harmonic on a C^{∞} domain $\Omega \subseteq \mathbb{R}^n$, and let $u(x) = 0$ for $x \notin \Omega$. Suppose φ is a C^{∞} function on \mathbb{R}^n such that $\varphi(x) = 0$ if $|x| \geq 1$, and φ is radial: there exists a function $\varphi_0 : [0, \infty) \to \mathbb{R}$ such that $\varphi(x) = \varphi_0(|x|)$. For $\epsilon > 0$, let

$$
\varphi_{\epsilon}(x) = \frac{1}{\epsilon^n} \varphi\left(\frac{x}{\epsilon}\right).
$$

Let

$$
A = \int_{\mathbb{R}^n} \varphi(x) \, dx.
$$

Fix $x_0 \in \Omega$ and let $R > 0$ be such that $x \in \Omega$ if $|x - x_0| < R$. For $0 < \epsilon < R$, prove that

$$
\varphi_{\epsilon} * u(x_0) = Au(x_0),
$$

where $*$ denotes convolution: by definition, $f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y) dy$.

5. Suppose that $\mathbf{b} \in \mathbb{R}^n$, and $\beta \in \mathbb{R}$ are given. Consider the Cauchy problem

(*)

$$
\begin{cases}\nu_t + \mathbf{b} \cdot \nabla u + \beta u = \Delta u, & \text{in } \mathbb{R}^n \times (0, \infty) \\
u(x, 0) = f(x), & \text{on } \mathbb{R}^n.\n\end{cases}
$$

(a) Determine $\mathbf{a} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ such that if u is a smooth solution to $(*)$, then $v(x,t) = e^{-(\mathbf{a}\cdot x + \alpha t)}u(x,t)$ solves the Cauchy problem

$$
\begin{cases} v_t = \Delta v, & \text{in } \mathbb{R}^n \times (0, \infty) \\ v(x, 0) = e^{-\frac{\mathbf{b}}{2} \cdot x} f(x), & \text{on } \mathbb{R}^n. \end{cases}
$$

- (b) Write down an explicit formula for a solution $u(x, t)$ to $(*)$.
- 6. Let $\Omega \subset \mathbb{R}^n$ a bounded domain with smooth boundary, and $T > 0$. Denote the cylinder $\Omega_T = \Omega \times (0, T]$ and its parabolic boundary $\partial_p \Omega_T = (\partial \Omega \times [0, T]) \cup (\Omega \times \{0\}).$
	- (a) Prove the following version of the maximum principle. Suppose that u and v are two functions in $C^2(\overline{\Omega_T})$ such that

$$
u_t - \Delta u \le v_t - \Delta v \quad \text{in } \Omega_T
$$

$$
u \le v \quad \text{on } \partial_p \Omega_T.
$$

Then $u \leq v$ in Ω_T .

(b) Suppose that $f(x, t), u_0(x)$ and $\phi(x, t)$ are continuous functions in their respective domains. Let $u \in C^2(\overline{\Omega_T})$ satisfy

$$
\begin{cases} u_t - \Delta u = e^{-u} - f(x, t), & \text{in } \Omega_T \\ u|_{t=0} = u_0, & \text{in } \Omega \\ u|_{\partial\Omega \times (0,T)} = \phi. \end{cases}
$$

Let $a = ||f||_{L^{\infty}}$ and $b = \sup{||u_0||_{L^{\infty}}, ||\phi||_{L^{\infty}}}.$

- i. Show that $-(aT + b) \le u(x, t)$, for all $(x, t) \in \overline{\Omega_T}$. Hint: Introduce $v(x,t) = -(at + b)$ and use part a).
- ii. Prove $u(x,t) \leq T e^{aT+b} + aT + b$, for all $(x,t) \in \overline{\Omega_T}$

7. Suppose that $f \in C^2(\mathbb{R})$ is odd and 2-periodic (i.e. $f(x+2) = f(x)$ for all $x \in \mathbb{R}$). Let $u \in C^2([0,1] \times \mathbb{R})$ solve

$$
\begin{cases}\nu_{tt} - u_{xx} = \sin(\pi x) & \text{in } (0,1) \times \mathbb{R} \\
u(x,0) = f(x), & u_t(x,0) = 0, \quad x \in [0,1] \\
u(0,t) = 0 = u(1,t), & t \in \mathbb{R}.\n\end{cases}
$$

- (a) Prove uniqueness of the solution $u \in C^2([0,1] \times \mathbb{R})$.
- (b) Find the solution u, and show that it satisfies $u(x, t+2) = u(x, t)$, and $u(x, -t) =$ $u(x, t)$ for all $(x, t) \in [0, 1] \times \mathbb{R}$.

8. Assume that $Ω ⊂ ℝⁿ$ is open, bounded with $C[∞]$ -smooth boundary $∂Ω$. Let $T > 0$, and denote $\Omega_T = \Omega \times (0,T]$. Suppose also that $f \in C^1(\mathbb{R}^{n+2})$, $\phi, \psi \in C^2(\overline{\Omega})$, and $u \in C^2(\overline{\Omega_T})$ is a solution of

$$
\begin{cases}\n u_{tt} - \Delta u = f(u, u_t, \nabla u), & \text{in } \Omega_T \\
 u = \phi, \quad u_t = \psi, & \text{on } \Omega \times \{t = 0\}, \\
 \frac{\partial u}{\partial \mathbf{n}} = 0, & \text{on } \partial\Omega \times [0, T].\n\end{cases}
$$

Prove that u is unique.

Hint: You may use an energy function of the form

$$
E(t) = \frac{1}{2} \int_{\Omega} (w_t^2 + |\nabla w|^2 + w^2) dx.
$$

PDE Qualifying Exam Fall 2016

1.) Consider the PDE, for $x \in \mathbb{R}$ and $y \in \mathbb{R}$:

$$
(*) \qquad \begin{cases} 2yu_x + u_y = u^4, \\ u(x,0) = f(x), \end{cases}
$$

for some C^2 function f.

(a) Show that (*) has a solution that exists for all $x \in \mathbb{R}$ and all $y > 0$ if and only if $f(t) \leq 0$ for all $t \in \mathbb{R}$.

(b) Show that if (*) has a solution for all $(x, y) \in \mathbb{R}^2$, then $f(t) = 0$ for all t and u is identically 0.

2.) Suppose $n \geq 2$, $R > 0$, $B(0,R) \subseteq \mathbb{R}^n$, and $u : \overline{B(0,R)} \to \mathbb{R}$ satisfies $u \in$ $C(\overline{B(0,R)})$, u is harmonic on $B(0,R)$, and $u \ge 0$ on $B(0,R)$.

(a) Prove that

$$
\frac{(R-|x|)R^{n-2}}{(R+|x|)^{n-1}}u(0) \le u(x) \le \frac{(R+|x|)R^{n-2}}{(R-|x|)^{n-1}}u(0),
$$

for all $x \in B(0, R)$.

(b) Prove that

$$
|u_{x_j}(x)| \leq \frac{(2n+2)R^{n-1}}{(R-|x|)^n}u(0),
$$

for $x \in B(0, R)$ and $j = 1, 2, ..., n$.

3.) Suppose $n \geq 3$, and $\Omega \subseteq \mathbb{R}^n$ is a C^{∞} bounded domain. Let

$$
\Gamma(x) = \frac{1}{(2-n)\omega_n|x|^{n-2}},
$$

for $x \in \mathbb{R}^n \setminus \{0\}$, be the fundamental solution for the Laplacian on \mathbb{R}^n . Let $G(x, y)$ be the Green's function for the Laplacian on Ω (i.e., $G(x, y) = h(x, y) + \Gamma(x - y)$, where, for each $x \in \Omega$, $h(x, y)$ is a harmonic function of y on Ω , and $h(x, y) = -\Gamma(x - y)$ for $x \in \Omega$ and $y \in \partial\Omega$). You can assume that $G \in C^2(\overline{\Omega} \times \overline{\Omega} \setminus \{(x,y) \in \overline{\Omega} \times \overline{\Omega} : x = y\})$. Prove that $\Gamma(x - y) < G(x, y) < 0$, for $(x, y) \in \Omega \times \Omega$ with $x \neq y$.

4.) Let $\Omega \subseteq \mathbb{R}^n$ be a bounded C^1 domain and suppose $T > 0$. Let $\Omega_T = \Omega \times (0, T]$. Suppose $u \in C_1^2(\Omega_T) \cap C(\overline{\Omega_T})$ satisfies

$$
\begin{cases}\n u_t = \Delta u + |\nabla u|^2 - u(u-1)(u-2), & \text{for } (x, t) \in \Omega_T, \\
 u(x, t) = e^{-t}[1 + \sin(|x|^2)], & \text{for } (x, t) \in \partial\Omega \times [0, T], \\
 u(x, 0) = 1 + \sin(|x|^2), & \text{for } x \in \Omega.\n\end{cases}
$$

Prove that $0 \le u \le 2$ on $\overline{\Omega_T}$.

5.) Suppose $g = g(x, t) \in C_1^2(\overline{\mathbb{R}^{n+1}_+})$, where $x \in \mathbb{R}^n$ and $t \ge 0$, and suppose g has compact support. Suppose $u \in C_1^2(\mathbb{R}^{n+1}_+) \cap C(\overline{\mathbb{R}^{n+1}_+})$ satisfies, for some positive constants K and a ,

$$
\begin{cases}\n u_t - \Delta u = g(x, t) & \text{for } x \in \mathbb{R}^n, t \in (0, \infty), \\
 u(x, 0) = 0 & \text{for } x \in \mathbb{R}^n, \\
 |u(x, t)| \leq Ke^{a|x|^2} & \text{for } x \in \mathbb{R}^n, t \in [0, \infty).\n\end{cases}
$$

Suppose $p > n/2$ and $M = \max_{t \geq 0} \int_{\mathbb{R}^n} |g(x, t)|^p dx$. Prove that there exists a constant C , depending only on n and p, such that

$$
|u(x,t)| \leq CM^{1/p}t^{1-\frac{n}{2p}},
$$

for all $(x, t) \in \mathbb{R}^{n+1}_{+}$.

6.) Suppose $f : \mathbb{R}^3 \to \mathbb{R}$ is harmonic, and $g : \mathbb{R}^3 \to \mathbb{R}$ is C^{∞} . Suppose $u \in$ $C^2(\mathbb{R}^3\times[0,\infty))$ satisfies

$$
\begin{cases}\n u_{tt} = \triangle u, & x \in \mathbb{R}^3, \ t > 0 \\
 u(x, 0) = f(x), & x \in \mathbb{R}^3, \\
 u_t(x, 0) = g(x), & x \in \Omega.\n\end{cases}
$$

(a) Prove that

$$
|u(x,t)| \le |f(x)| + \sup_{y \in B(0,1)} |g(y)|
$$

for $x \in \mathbb{R}^3$ and $0 < t < 1$.

(b) Prove that

$$
|u(x,t)| \leq |f(x)| + \frac{3}{4\pi t^2} \int_{B(x,t)} |g(y)| dy + \frac{1}{4\pi t} \int_{B(x,t)} |\nabla g(y)| dy,
$$

for $x \in \mathbb{R}^3$ and $t \geq 1$.

 \bar{z}

7.) Let $n \geq 2$, let $\Omega \subseteq \mathbb{R}^n$ be a C^{∞} bounded domain, and let $T > 0$. Suppose $\vec{h} = (h_1, h_2, ..., h_n)$, where each component $h_j = h_j(x, t) : \overline{\Omega} \times [0, T] \rightarrow \mathbb{R}$ satisfies
 $h_j \in C(\overline{\Omega} \times [0, T])$. Suppose $f, g : \overline{\Omega} \rightarrow \mathbb{R}$ are continuous. Show that there is at most

one function $u = u(x, t) \in C^2(\overline{\Omega} \times [0,$

$$
\begin{cases}\n u_{tt} = \Delta u + \nabla u \cdot \vec{h}, & x \in \Omega, \ 0 < t < T \\
 u = 0, & x \in \partial \Omega, \ 0 \le t \le T, \\
 u(x, 0) = f(x), & x \in \Omega, \\
 u_t(x, 0) = g(x), & x \in \Omega.\n\end{cases}
$$

In the following, unless otherwise stated, $\Omega \subset \mathbb{R}^n$ is an open, bounded set with C^{∞} -smooth boundary $\partial\Omega$. Denote $\Omega_T = \Omega \times (0, T]$.

1. Let $\Omega = \{(x, t) : x \in \mathbb{R}, t > 0\}$ and assume $u_0, v_0 \in C^1(\mathbb{R})$. Suppose $u,v\in C^1(\overline{\Omega})$ solve the system

$$
u_t + u_x = u \text{ on } \overline{\Omega},
$$

$$
v_t + v_x = -v + u \text{ on } \overline{\Omega},
$$

$$
u(x, 0) = u_0(x), \quad v(x, 0) = v_0(x) \quad x \in \mathbb{R}
$$

Find $u(x, t)$, $v(x, t)$ in terms of u_0, v_0 .

2. Let $R > 0$. Assume $u \in C^2(\overline{B_R(0)})$ is nonnegative and satisfies $u(0) = 0$, $0 \leq \Delta u \leq 1$ on $B_R(0)$.

Let u_1, u_2 be the solutions of the following problems

$$
\Delta u_1 = \Delta u \text{ on } B_R(0),
$$

$$
u_1 = 0 \text{ on } \partial B_R(0).
$$

$$
\Delta u_2 = 0 \text{ on } B_R(0),
$$

$$
u_2 = u \text{ on } \partial B_R(0).
$$

(a) Prove that $u = u_1 + u_2$ on $B_R(0)$ and $u_1 \le 0, u_2 \ge 0$ on $B_R(0)$. (b) Prove that $|u_1(x)| \leq \frac{R^2}{2n}$ for all $x \in B_R(0)$. Hint: Compare u_1 with $\phi(x) = \frac{1}{2n}(R^2 - |x|^2)$. (c) Prove that $u_2(x) \leq \frac{2^{n-1}}{n}R^2$ for all $x \in B_{R/2}(0)$. Conclude $|u(x)| \leq \frac{1+2^n}{2n}R^2$ for all $x \in B_{R/2}(0)$.

3. Let $n \geq 3, f \in C_0^{\infty}(\mathbb{R}^n)$. Assume $u \in C^{\infty}(\mathbb{R}^n)$ is a solution of

$$
-\Delta u = f \text{ on } \mathbb{R}^n
$$

and $u(x) \to 0$ as $|x| \to \infty$. Prove there exists $C > 0$ such that

$$
|u(x)| \leq \frac{C}{|x|^{n-2}}
$$

for all $x \in \mathbb{R}^n, x \neq 0$.

4. Let $T > 0$ and assume ϕ, h, f, g are C^{∞} - smooth functions. Suppose $u, v \in C^2(\overline{\Omega}_T)$ satisfy

$$
u_t - \Delta u = \phi \text{ on } \Omega_T,
$$

$$
u = h \text{ on } \partial\Omega \times (0, T],
$$

$$
u = f \text{ on } \Omega \times \{t = 0\},
$$

$$
v_t - \Delta v = \phi \text{ on } \Omega_T,
$$

$$
v = h \text{ on } \partial\Omega \times (0, T],
$$

$$
v = g \text{ on } \Omega \times \{t = 0\}.
$$

Prove that $\int_{\Omega} |u(x,t) - v(x,t)|^2 dx \leq \int_{\Omega} |f(x) - g(x)|^2 dx$ for all $t \in [0,T]$.

5. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is continuous, bounded and $\int_{\mathbb{R}^n} |f| dx < \infty$. Show there exists a unique solution $u \in C^{\infty}(\mathbb{R}^n \times (0,\infty)) \cap C^0(\mathbb{R}^n \times [0,\infty))$ of

$$
\begin{cases}\n u_t = \Delta u - 2u, & \text{on } \mathbb{R}^n \times (0, \infty), \\
 u = f, & \text{on } \mathbb{R}^n \times \{t = 0\}, \\
 |u(x, t)| \leq Ce^{-2t}(1 + t)^{-\frac{n}{2}}, & \text{for } (x, t) \in \mathbb{R}^n \times [0, \infty),\n\end{cases}
$$

for some constant C depending on f, n but not on x, t .

6. Let $f \in C^1(\mathbb{R})$ with f' bounded on $\mathbb R$ and $f(0) = 0$. Suppose $\phi, \psi \in$ $C^2(\overline{\Omega})$ and $u \in C^2(\overline{\Omega}_T)$ is a solution of

$$
u_{tt} - \Delta u = f(u) \text{ on } \Omega_T,
$$

$$
u = 0 \text{ on } \partial\Omega \times (0, T],
$$

$$
u = \phi, \quad u_t = \psi \text{ on } \Omega \times \{t = 0\}
$$

(a) Denoting $E(t) = \frac{1}{2} \int_{\Omega} (u_t^2 + |\nabla u|^2 + u^2) dx$, prove $E(t) \leq E(0)e^{Ct}$ for all $t \in [0, T]$, and for some constant $C > 0$. (b) Prove the solution u is unique.

7. Let $p > n/2$. Suppose $\phi, \psi \in C_0^{\infty}(\mathbb{R}^n)$ and $u \in C^2(\mathbb{R}^n \times [0, \infty))$ is a solution of

$$
u_{tt} - \Delta u = 0 \text{ on } \mathbb{R}^n \times [0, \infty),
$$

$$
u = \phi, \quad u_t = \psi \text{ on } \mathbb{R}^n \times \{t = 0\}.
$$

Prove that there exists $C > 0$ such that

$$
\int_{\mathbb{R}^n} \frac{|u_t| + |\nabla u|}{(1+|x|+t)^p} dx \leq \frac{C}{(1+t)^{p-n/2}}
$$

for all $t \geq 0$.

In the following, unless otherwise stated, $\Omega \subset \mathbb{R}^n$ is an open, bounded set with C^{∞} -smooth boundary $\partial\Omega$. Denote $\Omega_T = \Omega \times (0, T]$.

1. Let $\Omega = \{(x, t) : x \in \mathbb{R}, t > 0\}, b \in \mathbb{R}$ and assume $a \in C^1(\overline{\Omega}), \phi \in C^1(\mathbb{R})$ are bounded. Suppose $u \in C^1(\overline{\Omega})$ is a solution of

$$
u_t + a(x, t)u_x + bu = 0 \text{ on } \Omega,
$$

$$
u(x, 0) = \phi(x), \quad x \in \mathbb{R}.
$$

(a) Prove $\sup_{x \in \mathbb{R}} |u(x, t)| \le e^{-bt} \sup_{\mathbb{R}} |\phi|$ for all $t \ge 0$.
(b) Find the solution when $a = a(t)$.

2. Let $\Omega \subset \mathbb{R}^2$ and suppose $g \in C^0(\partial \Omega)$. Show that there exists at most one solution $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfying

$$
\Delta u + u_x - u_y = u^3 \quad \text{on} \quad \Omega,
$$

$$
u = g \quad \text{on} \quad \partial \Omega.
$$

3. Let $\Omega \subset \mathbb{R}^n$. A function $v \in C^0(\Omega)$ is subharmonic on Ω iff for every $x \in \Omega$, there exists $r(x) > 0$ such that v satisfies the *mean-value property*:

$$
v(x) \leq \frac{1}{\omega_n r^{n-1}} \int_{\partial B(x,r)} v(\xi) dS(\xi)
$$

for all $r \in (0, r(x)]$, where ω_n is the surface area of the unit sphere in \mathbb{R}^n . (a) Suppose $u, v \in C^{0}(\Omega), u$ is harmonic on Ω, v is subharmonic on $\Omega, v \leq$ u on $\partial\Omega$. Prove $v \leq u$ on Ω . You can assume the maximum principle for subharmonic functions.

(b) Let $v \in C^{0}(\Omega)$ be subharmonic on Ω and $B(x_0, R) \subset \Omega$. For $r \in (0, R)$ define

$$
g(r)=\frac{1}{\omega_n r^{n-1}}\int_{\partial B(x_0,r)}v(\xi)dS(\xi).
$$

Prove g is nondecreasing on $(0,R)$. Deduce the mean-value property

$$
v(x_0) \leq \frac{1}{\omega_n r^{n-1}} \int_{\partial B(x_0,r)} v(\xi) dS(\xi)
$$

holds for any $\overline{B(x_0,r)} \subset \Omega$ (note, in the definition of subharmonic function, this is assumed only for sufficiently small r). Hint: for $r_1 < r_2$ use the Poisson Integral Formula on $B(x_0, r_2)$ to get a harmonic function.

4. Let $m > 0$, $T > 0$ and assume $u_0 \in C^0(\overline{\Omega})$ is nonnegative on Ω . Suppose $u \in C^{2,1}(\Omega_T) \cap C^0(\overline{\Omega}_T)$ is a solution of

$$
u_t = \Delta u + |\nabla u|^2 + u(m - u) \text{ on } \Omega_T,
$$

$$
u = 0 \text{ on } \partial\Omega \times (0, T],
$$

$$
u = u_0 \text{ on } \Omega \times \{t = 0\}.
$$

Prove $0 \le u \le \max\{m, \sup_{\Omega} u_0\}$ on $\overline{\Omega}_T$.

5. Let $1 < p < \infty$, $u_0 \in C^0(\overline{\Omega})$. Consider

$$
u_t = \Delta u + |u|^{p-1}u \text{ on } \Omega_T,
$$

$$
u = 0 \text{ on } \partial\Omega \times (0, T],
$$

$$
u = u_0 \text{ on } \Omega \times \{t = 0\}.
$$

For each u_0 , let $T_{\text{max}} = T_{\text{max}}(u_0) \in (0, \infty]$ be the maximal time such that the problem above has a solution $u \in C^{2,1}(\overline{\Omega} \times [0,T_{\max}))$. Let $E(t) =$ $\frac{1}{2}\int_{\Omega}|\nabla u|^2dx-\frac{1}{p+1}\int_{\Omega}|u|^{p+1}dx, \ \ y(t)=\int_{\Omega}u^2dx \ \ \text{for}\ t\in[0,T_{\max}).$ (a) Prove $\frac{d}{dt}E(t) = -\int_{\Omega} u_t^2 dx$, $t \in (0, T_{\text{max}})$.

(b) With $c = \frac{2(p-1)}{p+1} |\Omega|^{\frac{1-p}{2}}$ prove $\frac{d}{dt}y(t) \ge -4E(0) + cy(t)^{\frac{p+1}{2}}$, $t \in (0, T_{\text{max}})$.

(c) Assume u_0 is nontrivial, $E(0) < 0$ and prove $T_{\text{max}}(u_0) < \$

6. Consider the initial-boundary value problem

$$
u_{tt} - u_{xx} = -2 + \sin x \text{ on } (0, \pi) \times (0, \infty),
$$

$$
u = x^2 - \pi x, \quad u_t = 0 \text{ at } t = 0,
$$

$$
u = 0 \text{ at } x = 0. \pi.
$$

(a) Find the steady state solution $u = f(x)$ of the differential equation and boundary conditions.

(b) Find the solution of the entire problem.

7. Suppose $a \in C^0(\mathbb{R}^n)$, $a \geq 1$ on \mathbb{R}^n and $u_0, u_1 \in C_0^{\infty}(\mathbb{R}^n)$. Suppose $u \in C^2(\mathbb{R}^n \times [0,\infty))$ is a solution of the problem

$$
u_{tt} - \Delta u + a(x)u_t = 0 \text{ on } \mathbb{R}^n \times (0, \infty),
$$

 $u(x, 0) = u_0(x), \ \ x \in \mathbb{R}^n,$ $u_t(x, 0) = u_1(x), \ \ x \in \mathbb{R}^n.$

Let $E(t) = \int_{\Omega} (u_t^2 + |\nabla u|^2) dx$, $K(t) = \int_{\Omega} (uu_t + \frac{1}{2}au^2) dx$, $t \in [0, \infty)$.

(a) Prove $\frac{d}{dt} E \le 0$, $\frac{d}{dt} (K + E) \le -E$, and $K + E \ge 0$ for all $t \ge 0$. You may assume finite speed of propagation of solutions (the suppo is bounded in \mathbb{R}^n for each $t \ge 0$.

(b) Prove $E(t) \le Ct^{-1}$ for all $t > 0$. Hint: Integrate an inequality in (a).

University of Tennessee, PDE Qualifying Exams

1. In the region $R := \{(x, t) : x > 0, t > 0\}$, solve the PDE

$$
u_t + t^2 u_x = 4u
$$
, with, $u(0, t) = h(t)$, $u(x, 0) = 1$.

Find the conditions on h so that the solution is continuous on R .

2. Solve the following PDE (also state the domain of the solution)

$$
x^2u_x+xyu_y=u^3, \quad \text{and} \quad u=1, \quad \text{on the curve} \quad y=x^2.
$$

3. Let $a > 0$ and $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < a^2\}$. Consider the equation

$$
\begin{cases} \Delta u = 0, & \text{in } D, \\ u = 1 + x^2 + 3xy, & \text{on } \partial D. \end{cases}
$$

without solving the equation, find $u(0,0)$, $\max_{\overline{D}} u$, and $\min_{\overline{D}} u$.

4. Let $B_1 = \{x \in \mathbb{R}^n : |x| < 1\}$ for $n > 2$. Let u be defined on $\overline{B}_1 \setminus \{0\}$. Assume that $u \in C(\overline{B}_1 \setminus \{0\}) \cap C^2(B_1 \setminus \{0\}), u$ is harmonic in $B_1 \setminus \{0\}$, and

$$
\lim_{|x|\to 0}\frac{u(x)}{|x|^{2-n}}=0.
$$

Prove that u can be extended to 0 so that $u \in C^2(B_1)$.

Hint: By using the maximum principle on $B_1 \setminus B_r$ for $0 < r < 1$, one proves that $u = v$ in $B_1 \setminus \{0\}$, where v is the solution of the equation

$$
\left\{\begin{array}{ll}\Delta v = 0, & \text{in} \quad B_1, \\ v = u, & \text{on} \quad \partial B_1.\end{array}\right.
$$

5. Let Ω be a non-empty, smooth bounded domain in \mathbb{R}^n . Let $f : \mathbb{R} \to \mathbb{R}$ be a C^1 function such that $|f'|$ is bounded. Consider the reaction-diffusion equation

$$
\begin{cases}\n u_t - \Delta u + f(u) &= 0, & \text{in } \Omega \times (0, \infty), \\
 u &= 0, & \text{on } \partial \Omega \times (0, \infty), \\
 u(x, 0) &= u_0(x), & x \in \Omega.\n\end{cases}
$$

Prove that C^2 solutions to the problem are unique.

Jan. 2015

6. Let $u_0 \in C_c^{\infty}(\Omega)$ for some non-empty, open, smooth bounded domain $\Omega \subset \mathbb{R}^n$ with $n > 2$.
Assume also that $u_0 \ge 0$. Let $u \in C^{\infty}(\Omega \times [0, \infty))$ be a solution of the equation

$$
\begin{cases}\nu_t &= \Delta u, & \text{in } \Omega \times (0, \infty), \\
u(\cdot, t) &= 0, & \text{on } \partial \Omega \times (0, \infty), \\
u(\cdot, 0) &= u_0(\cdot), & \text{on } \Omega.\n\end{cases}
$$

(a) Prove that for all $t > 0$,

$$
||u(\cdot,t)||_{L^1(\Omega)} \leq ||u_0||_{L^1(\Omega)}, \text{ and } ||u(\cdot,t)||_{L^2(\Omega)} \leq ||u_0||_{L^1(\Omega)}^{\alpha} ||u(\cdot,t)||_{L^{2^*}(\Omega)}^{1-\alpha},
$$

where

$$
\alpha = \frac{2^*-2}{2(2^*-1)},
$$
 for $2^* = \frac{2n}{n-2}.$

(b) Prove that there is $C > 0$ depending on n, Ω such that

$$
\frac{d}{dt}\int_{\Omega}u^2(x,t)dx \leq -C\|u_0\|_{L^1(\Omega)}^{-\frac{2\alpha}{1-\alpha}}\left\{\int_{\Omega}u^2(x,t)dx\right\}^{\frac{1}{1-\alpha}}.
$$

(c) Prove that (for some new $C = C(n, \Omega) > 0$)

$$
||u(\cdot,t)||_{L^2(\Omega)} \leq C||u_0||_{L^2(\Omega)}(1+t)^{-\frac{n}{4}}, \quad t \geq 0.
$$

Remark: The following inequalities maybe useful

(i) Hölder's inequality:

$$
||f||_{L^p(\Omega)} \leq ||f||_{L^{p_1}(\Omega)}^{\theta_1} ||f||_{L^{p_2}(\Omega)}^{\theta_2},
$$

with

$$
\frac{1}{p} = \frac{\theta_1}{p_1} + \frac{\theta_2}{p_2}, \quad \theta_1 + \theta_2 = 1, \quad p, p_1, p_2 \in (1, \infty), \quad \theta_1, \theta_2 \in (0, 1).
$$

(ii) Sobolev - Poincaré inequality:

$$
\|\varphi\|_{L^{2^*}(\Omega)} \leq C(n,\Omega) \|\nabla \varphi\|_{L^2(\Omega)}, \quad \forall \varphi \in C^{\infty}(\Omega), \quad \varphi_{|\partial\Omega} = 0.
$$

7. Let $c > 0$ be a fixed number. Solve the following wave equation

$$
\begin{cases}\nu_{tt} = c^2 u_{xx} + \cos(ct) \cos(x), & -\infty < x < \infty, \quad t > 0, \\
u(x, 0) = x, & u_t(x, 0) = \sin(x), & -\infty < x < \infty.\n\end{cases}
$$

8. Let $u(x, t)$ be a C^2 , compactly supported solution to the equation

$$
u_{tt} - \Delta u = 0, \quad u(x,0) = 0, \quad u_t(x,0) = g(x), \quad x \in \mathbb{R}^3 \quad t > 0.
$$

Assume that $\int_{\mathbb{R}^3} g(x)^2 dx < \infty$. Show that

$$
\int_0^\infty u(0,t)^2 dt \leq \frac{1}{4\pi} \int_{\mathbb{R}^3} g(x)^2 dx.
$$

PDE Qualifying Exams

August 2014

1. Let g be a given smooth function on \mathbb{R} . Solve the PDE

$$
\begin{cases}\n u_x + u_y = u^2, & \text{on } \{(x, y) \in \mathbb{R}^2, y > 0\}, \\
 u(x, 0) = g(x), & x \in \mathbb{R}.\n\end{cases}
$$

2. Let $\Omega \subset \mathbb{R}^n$ be an open bounded domain with smooth boundary $\partial\Omega$ for $n \in \mathbb{N}$. Let u be a harmonic function in Ω and $x_0 \in \Omega$. Prove that

$$
\left|\frac{\partial u(x_0)}{\partial x_i}\right| \leq \frac{n}{d} \sup_{x \in \Omega} \left|u(x) - u(x_0)\right|, \quad \text{where} \quad d = \text{dist}(x_0, \partial \Omega), \quad \forall \ i = 1, 2, \cdots, n.
$$

Assume in addition that $u \geq 0$ in Ω , show that

$$
\Big|\frac{\partial u(x_0)}{\partial x_i}\Big|\leq \frac{n}{d}u(x_0),\quad \forall\,\,i=1,2,\cdots,n.
$$

3. Let $\Omega = \mathbb{R}^3 \setminus \overline{B_1(0)}$, where $B_1(0)$ is an open unit ball in Ω . Let u be a harmonic function in Ω such that $u(x) \to 0$ as $|x| \to \infty$. Prove that there exist $r_0 > 1$ and $M > 0$ such that

$$
|u(x)| \leq \frac{M}{|x|}, \quad |u_{x_k}(x)| \leq \frac{M}{|x|^2}, \quad \forall |x| \geq r_0, \quad \forall \ k = 1, 2, 3.
$$

4. Let $T \in (0, \infty)$ and $\Omega \subset \mathbb{R}^n$ be an open bounded domain with smooth boundary $\partial \Omega$ for $n \in \mathbb{N}$. Let $\Omega_T = \Omega \times (0,T]$ and $u \in C^2(\overline{\Omega}_T)$ be a solution of the equation

$$
\begin{cases}\n u_t - \Delta u + c(x,t)u &= u^2(1-u), & \text{in } \Omega_T, \\
 u + \frac{\partial u}{\partial \vec{v}} &= 0, & \partial \Omega \times (0,T], \\
 u(x,0) &= g(x), & x \in \Omega,\n\end{cases}
$$

with some given function $c(x, t)$ and $g(x)$. Assume that $c > 0$ on $\overline{\Omega}_T$ and $0 \le g \le 1$ on $\overline{\Omega}$. Prove that $0 \le u \le 1$ on $\overline{\Omega}_T$.

- 5. Consider $\Omega = [0, a] \times [0, b] \subset \mathbb{R}^2$ for some fixed $a > 0, b > 0$.
	- (a) Use separation of variables to find the first (i.e. the smallest) eigenvalue λ_1 and eigenfunction ϕ_1 of the eigenvalue problem

$$
\left\{\begin{array}{ccc} -\Delta \phi &= \lambda \phi, & \Omega, \\ \phi &= 0, & \partial \Omega \end{array}\right.
$$

Remark: Eigenfunctions must be non-trivial.

(b) Let g be a smooth function on $\overline{\Omega}$ and g vanishes on $\partial\Omega$. Also, let $\kappa < \lambda_1$. Assume that u is a solution of the heat equation

$$
\begin{cases}\n u_t &= \Delta u + \kappa u, & x \in \Omega, \ t > 0, \\
 u(x, t) &= 0 \\
 u(x, 0) &= g(x), & x \in \Omega.\n\end{cases}
$$

prove that $u(x,t) \to 0$ uniformly in x as $t \to \infty$.

6. Let $T \in (0,\infty)$ and $\Omega \subset \mathbb{R}^n$ be an open bounded domain with smooth boundary $\partial\Omega$ for $n \in \mathbb{N}$. Let us denote $\Omega_T = \Omega \times (0,T)$ and Γ_T the parabolic boundary of Ω_T . Suppose that $u \in C(\overline{\Omega}_T) \cap C^2(\Omega_T)$ satisfies the PDE

$$
u_t - \Delta u = c(x, t)u, \quad (x, t) \in \Omega_T
$$

for some $c \in C(\overline{\Omega}_T)$ and $c \leq 0$. Show that if $u \geq 0$ on Γ_T , then

$$
\max_{(x,t)\in\overline{\Omega}_T}u(x,t)=\max_{(x,t)\in\Gamma_T}u(x,t).
$$

Give a counter example showing that the conclusion does not hold if the condition $u \geq 0$ on Γ_T is violated.

7. Let $T \in (0, \infty)$ and $\Omega \subset \mathbb{R}^n$ be an open bounded domain with smooth boundary $\partial \Omega$ for $n \in \mathbb{N}$. Suppose that $u \in C^2(\overline{\Omega} \times [0,T])$ is a classical solution of the equation

$$
\begin{cases}\nu_{tt} - \Delta u = f(x, t), & \Omega \times (0, T), \\
u(x, t) = 0, & (x, t) \in \partial\Omega \times (0, T).\n\end{cases}
$$

Let

$$
E(t) = \frac{1}{2} \int_{\Omega} \left[u_t^2(x, t) + |\nabla u|^2(x, t) \right] dx
$$

(a) Prove that

$$
E(t) \leq e^T \Big[E(0) + \frac{1}{2} \int_0^T \int_{\Omega} f^2(x, s) dx ds\Big], \quad \forall t \in [0, T].
$$

(b) Use the energy estimate to prove the uniqueness of the classical solution of the initial value problem

$$
\begin{cases}\n u_{tt} - \Delta u = f(x, t), & \Omega \times (0, T), \\
 u(x, t) = 0, & (x, t) \in \partial\Omega \times (0, T) \\
 u(x, 0) = g(x), & x \in \Omega, \\
 u_t(x, 0) = h(x), & x \in \Omega.\n\end{cases}
$$

8. Let $f \in C^1(\mathbb{R}^3)$ with compact support. Suppose that $u \in C^2(\mathbb{R}^3 \times (0,\infty))$ and u solves the Cauchy problem

$$
\left\{\begin{array}{lll} u_{tt}-\Delta u&=0, & \R^3\times(0,\infty),\\ u(x,0)&=0, & x\in\R^3,\\ u_t(x,0)&=f(x), & x\in\R^3.\end{array}\right.
$$

Prove that there is $M > 0$ such that

$$
|u(x,t)| \leq \frac{M}{1+t} \Big[\|f\|_{L^{\infty}(\mathbb{R}^3)} + \|f\|_{L^1(\mathbb{R}^3)} + \|\nabla f\|_{L^1(\mathbb{R}^3)} \Big], \quad \forall t \geq 0.
$$

Spring 2014 **PDE Qualifying Exam**

1.) (a) Solve the following Cauchy problem on \mathbb{R}^2 :

$$
\begin{cases}\n u_x + u_y = x + y \\
 u = x^3 \text{ on the line } y = -x.\n\end{cases}
$$

(b) For what C^1 function or functions $f(x)$ does the Cauchy problem on \mathbb{R}^2 :

$$
\begin{cases}\n u_x + u_y = 3u \\
 u = f(x) \text{ on the line } y = x\n\end{cases}
$$

have a solution? Prove your answer.

2.) Consider Burger's equation

$$
(*) \qquad \begin{cases} uu_x + u_y = 0, \text{ for } x \in \mathbb{R}, y > 0 \\ u(x, 0) = f(x), \text{ for } x \in \mathbb{R}, \end{cases}
$$

with initial data

$$
f(x) = \begin{cases} 4, & \text{for } x < 0, \\ 4 - \frac{x}{2}, & \text{for } 0 \le x \le 2, \\ 3, & \text{for } x > 2. \end{cases}
$$

(a) Find, with proof, the smallest $y^* > 0$ such that a shock occurs at (x, y^*) for some $x \in \mathbb{R}$.

(b) Find $u(x, y)$ satisfying (*) for $x \in \mathbb{R}$ and $0 \leq y < y^*$, except on two line segments where the partial derivatives of u may not exist.

(c) Find the integral, or weak, solution $u(x, y)$ of $(*)$ for $y \ge 0$.

3.) (a) Suppose $f \in C^{\infty}(\mathbb{R}^n)$ satisfies $f(x) > 0$ for all $x \in \mathbb{R}^n$. Suppose $u \in C^2(\mathbb{R}^n)$ satisfies

$$
\triangle u - f(x)u = 0
$$

on \mathbb{R}^n , and $u(x) \to 0$ uniformly as $|x| \to \infty$. Prove that u is identically 0.

(b) Find a non-trivial solution of $\Delta u + u = 0$ in \mathbb{R}^3 such that $u(x) \to 0$ uniformly as $|x| \to \infty$. Hint: look for a radial solution $u(x, y, z) = v(r)$ where $r = \sqrt{x^2 + y^2 + z^2}$ and note that $rv'' + 2v' = (rv)''$.

4.) Let $\Omega \subseteq \mathbb{R}^n$ be a bounded open set. Suppose that $\{u_n\}_{n=1}^{\infty}$ is a sequence of harmonic functions on Ω such that

$$
\int_{\Omega}|u_n(x)-u_m(x)|^2dx\longrightarrow 0
$$

as $\max\{n,m\} \to \infty$. Prove that u_n converges to a harmonic function on Ω .

5.) Suppose $u = u(x, t) \in C^2([0, 1] \times [0, T])$ satisfies

$$
\begin{cases}\n u_t = u_{xx} + tu_x, & x \in [0,1], t \in [0,T] \\
 u_x(0,t) = u_x(1,t) = 0, & t \in [0,T].\n\end{cases}
$$

Prove that

$$
\max_{[0,1]\times[0,T]}u(x,t)=\max_{[0,1]}u(x,0).
$$

If you use a major theorem in PDE in your solution, provide the proof of that theorem.

6.) (a) Suppose $u = u(x, t) \in C(\mathbb{R}^n \times [0, \infty)) \cap C^2(\mathbb{R}^n \times (0, \infty))$ satisfies

$$
\begin{cases} u_t = \Delta u, & \text{for } x \in \mathbb{R}^n, t > 0, \\ u(x, 0) = f(x), & \text{for } x \in \mathbb{R}^n, \end{cases}
$$

where $f(x) \geq 0$ is a C^{∞} , bounded function satisfying $\int_{\mathbb{R}^n} f(x) dx = 2$. Suppose u satisfies

$$
|u(x,t)| \le A e^{\alpha |x|^2}
$$

for some positive constants α and A. Prove that $\lim_{t\to\infty}u(x,t)=0$ and $\int_{\mathbb{R}^n}u(x,t)\,dx=$ 2 for all $t > 0$.

(b) Does there exist a bounded solution $u(x,t) \in C(\mathbb{R}^n \times [0,\infty)) \cap C^2(\mathbb{R}^n \times (0,\infty))$ of the initial value problem

$$
\begin{cases} u_t = \Delta u + \frac{\cos(|x|^2 + 1)}{1 + t^2}, & \text{for } x \in \mathbb{R}^n, t > 0, \\ u(x, 0) = 0, & \text{for } x \in \mathbb{R}^n? \end{cases}
$$

Justify your answer.

7.) Suppose $u = u(x, t) \in C^2(\mathbb{R} \times [0, \infty))$ satisfies

$$
\begin{cases}\n u_{tt} - u_{xx} + u = 0, & \text{for } x \in \mathbb{R}, t > 0, \\
 u(x, 0) = f(x), & \text{for } x \in \mathbb{R}, \\
 u_t(x, 0) = g(x), & \text{for } x \in \mathbb{R},\n\end{cases}
$$

where f and g are C^{∞} and have compact support.

(a) For any $(x_0, t_0) \in \mathbb{R} \times (0, \infty)$ and $0 \le t \le t_0$, let $I(t)$ be the interval

$$
I(t) = [x_0 - t_0 + t, x_0 + t_0 - t].
$$

Define

$$
e(t) = \int_{I(t)} [u^2 + u_t^2 + u_x^2](x, t) dx,
$$

for $0 \le t \le t_0$. Prove that e is non-increasing on $[0, t_0]$.

(b) Suppose that $f(x) = 0$ and $g(x) = 0$ for $|x| \ge 1$. Prove that $u(x,t) = 0$ for $|x| > t + 1$, for all $t > 0$.

8.) Suppose $u = u(x, t) \in C^2(\mathbb{R} \times [0, \infty))$, is the solution of the wave equation

$$
\begin{cases}\n u_{tt} = \triangle u, & x \in \mathbb{R}, t > 0 \\
 u(x, 0) = f(x), & x \in \mathbb{R}, \\
 u_t(x, 0) = g(x), & x \in \mathbb{R}.\n\end{cases}
$$

Suppose g and h are C^{∞} with $f(x) = g(x) = 0$ for all x such that $|x| \ge R$, for some $R > 0$. The kinetic energy is

$$
k(t) = \frac{1}{2} \int_{\mathbb{R}} u_t^2(x, t) dx
$$

and the potential energy is

$$
p(t) = \frac{1}{2} \int_{\mathbb{R}} u_x^2(x, t) dx.
$$

- (a) Prove that $k(t) + p(t)$ is constant.
- (b) Prove that $k(t) = p(t)$ for all $t > R$.

 $\overline{}$

PDE Qualifying Exam

August 12, 2013

1.) Consider the equation

$$
(*) \t u_x + 2u_y = u,
$$

for $(x, y) \in \mathbb{R}^2$.

(a) Solve (*) with the Cauchy data $u(x, x) = e^{3x}$ for all $x \in \mathbb{R}$.

(b) Suppose u satisfies (*) with Cauchy data $u(x, 2x) = f(x)$. Prove that $f(x) =$ Ce^{x} for some constant C .

(c) For each constant $C \neq 0$, show that (*) with Cauchy data $u(x, 2x) = Ce^x$ has infinitely many solutions.

2.) Reduce the following equation on \mathbb{R}^2 :

$$
u_{xx} + 6x^2 u_{xy} + 9x^4 u_{yy} + 6x u_y + y - x^3 = 0
$$

to canonical form and find the general solution.

3.) Let $\Omega \subseteq \mathbb{R}^n$ be a smooth (C^{∞}) , bounded open set. Consider the problem

$$
(**) \qquad \begin{cases} \Delta u(x) = f(x), & \text{for } x \in \Omega \\ u(x) + \frac{\partial u}{\partial n} = g(x), & \text{for } x \in \partial\Omega \end{cases}
$$

where $f \in C(\Omega)$, $g \in C(\partial \Omega)$, and $\frac{\partial}{\partial n}$ is the outward normal derivative on $\partial \Omega$.

(a) Prove that there is at most one $u \in C^2(\overline{\Omega})$ satisfying (**).

(b) Suppose $u \in C^2(\overline{\Omega})$ satisfies (**), with $f \ge 0$ on Ω and $g \le 0$ on $\partial\Omega$. Prove that $u \leq 0$ on Ω .

4.) Suppose $u = u(x, t) \in C([0, 1] \times [0, \infty)) \cap C^2((0, 1) \times (0, \infty))$, and u satisfies

$$
\begin{cases}\n u_t = u_{xx}, & \text{for } 0 < x < 1, t > 0, \\
 u(0, t) = u(1, t) = 0, & \text{for } t \ge 0, \\
 u(x, 0) = 4x(1 - x), & \text{for } 0 \le x \le 1.\n\end{cases}
$$

Prove that

(a)
$$
0 < u(x, t) < 1
$$
 for $0 < x < 1$, $t > 0$;
(b) $u(1-x, t) = u(x, t)$ for $0 \le x \le 1$, $t > 0$;

- (c) $-8 < u_{xx}(x, t) < 0$ for $0 < x < 1$, $t > 0$;
- (d) $\int_0^1 u^2(x,t) dx$ is a strictly decreasing function of t.

5.) Suppose $u = u(x, t) \in C^2([0, 1] \times [0, \infty))$ satisfies

$$
\begin{cases}\nu_{tt} - u_{xx} = -\frac{u}{1+u^2}, & \text{for } 0 < x < 1, t > 0 \\
u(0, t) = u(1, t) = 0, & \text{for } t \ge 0, \\
u(x, 0) = g(x), & \text{for } 0 \le x \le 1,\n\end{cases}
$$

where g is a given function satisfying $g(0) = g(1) = 0$.

(a) Define

$$
E(t) = \frac{1}{2} \int_0^1 u_t^2 + u_x^2 + \log(1 + u^2) \, dx,
$$

for $t \geq 0$. Prove that E is constant.

(b) Show that there exists $C > 0$ such that $|u(x,t)| \leq C$ for all $x \in [0,1]$ and $t\geq 0$.

6.) Let $\Omega \subseteq \mathbb{R}^n$ be an open set.

(a) Suppose $u \in C^1(\overline{\Omega})$ and

$$
\int_{\partial B(x,r)} \frac{\partial u}{\partial n} \, dS \ge 0
$$

for every $x \in \mathbb{R}^n$ and $r > 0$ such that $B(x, r) \subseteq \Omega$, where $\frac{\partial}{\partial n}$ is the outward normal derivative on $\partial \Omega$ and dS is surface measure on $\partial \Omega$. Prove that u is subharmonic on Ω . Warning: a subharmonic function is not necessarily C^2 .

(b) Prove the converse of part (a) under the additional assumption that $u \in C^2(\overline{\Omega})$.

7.) Let $\Omega \subset \mathbb{R}^n$ be a smooth bounded open set. Let $h \leq 0$ be a continuous function on $\overline{\Omega}\times[0,\infty)$. Prove that there exists at most one function $u=u(x,t)\in C^2(\overline{\Omega}\times[0,\infty))$ satisfying

$$
\begin{cases}\n u_t = \Delta u + h(x, t)u, & \text{for } x \in \Omega, t \ge 0 \\
 u(x, 0) = f(x), & \text{for } x \in \Omega, \\
 u(x, t) = g(x, t), & \text{for } x \in \partial\Omega, t \ge 0.\n\end{cases}
$$

8.) Suppose $u = u(x, t) \in C^2(\mathbb{R}^3 \times [0, \infty))$, is the solution of the wave equation

$$
\begin{cases}\n u_{tt} = \Delta u, & \text{for } x \in \mathbb{R}^3, t > 0 \\
 u(x, 0) = 0, & \text{for } x \in \mathbb{R}^3, \\
 u_t(x, 0) = g(x), & \text{for } x \in \mathbb{R}^3.\n\end{cases}
$$

Suppose $g(x) = 1$ for $|x| > 1$. Prove that

 $u(x,t)=t$

if (i) $|x| > t + 1$ or (ii) $|x| < t - 1$.

JANUARY 2013 PDE PRELIM

Problem 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a bounded C^2 function that satisfies

$$
\nabla f=G,
$$

where $G:\mathbb{R}^n\rightarrow \mathbb{R}^n$ satisfies

$$
\int_{\partial B_r(x_0)} G(x)\cdot (x-x_0)dA(x)=0,
$$

for all $x_0 \in \mathbb{R}^n$, $r > 0$. Prove that f is constant.

Problem 2. Let $\Omega = \{(x, t) : 0 < x < 1, 0 < t < \infty\}$. Assume that $u \in$ $C^{2,1}(\Omega) \cap C^{0}(\overline{\Omega})$ satisfies the initial boundary value problem given by the equation

$$
\frac{\partial u}{\partial t}(x,t)=\frac{\partial^2 u}{\partial x^2}(x,t)
$$

in the interior of the region Ω , together with the boundary conditions

 $u(x, 0) = f(x), u(0,t) = \alpha(t), u(1,t) = \beta(t),$

where $f(0) = \alpha(0)$, $f(1) = \beta(0)$.

- (a) Show that $u(x, t)$ cannot have a maximum where $\partial^2 u/\partial^2 x < 0$ in the interior of the region in (x, t) space with $t > 0$ and $0 < x < 1$.
- (b) State the strong maximum/minimum principle for the previous IVBP.
- (c) Using a maximum/minimum principle show that if $f(x) \ge 0$, $\alpha(t) \ge 0$, and $\beta(t) \geq 0$, then $u(x, t) \geq 0$.

Problem 3. Suppose $u : \mathbb{R}^2 \to \mathbb{R}$ is C^1 and bounded and satisfies the PDE

$$
u(x,y) = a(x,y)u_x(x,y) + b(x,y)u_y(x,y).
$$

- (a) Show that if a and b are constant functions, then u is identically 0.
- (b) Prove that if $a = 1 + x^2$ and $b = 1 + y^2$, the above PDE has non-vanishing bounded solutions.

Problem 4. Consider the cube $\Omega = (1, 2) \times (1, 2) \times (1, 2)$. Suppose $u \in C^2(\Omega) \cap$ $C^0(\bar{\Omega})$ satisfies

$$
yu_{xx} + zu_{yy} + xu_{zz} = 1
$$

in Ω , with $u = 0$ on the boundary $\partial \Omega$. Prove that $u \geq -\frac{1}{8}$.

Hint. Compare with a function of the type $v(\vec{x}) = a + b|\vec{x} - \vec{x}_0|^2$, where $a, b \in$ $\mathbb{R}, \ \vec{x}_0 \in \mathbb{R}^3.$

Problem 5. Consider the unbounded domain $\Omega = \{(x, y) : y > x^2\} \subset \mathbb{R}^2$. Suppose u is bounded and harmonic on Ω , and vanishes on $\partial\Omega$. Show $u \equiv 0$.

Hint. Test with $u\chi$, where $\chi(y)$ is a cutoff function in the second variable y, and is nonconstant only on $y \in [\ell, 2\ell]$.

Problem 6. Suppose $u \in C^2(\mathbb{R}^3 \times [0, \infty))$ is a solution of

$$
\left\{\begin{array}{rl} u_{tt}-\Delta u=0 & \textrm{on}\;\mathbb{R}^3\times[0,\infty),\\ u(x,0)=0 & x\in\mathbb{R}^3,\\ u_t(x,0)=\psi(x) & x\in\mathbb{R}^3,\end{array}\right.
$$

where $\psi \in C^{\infty}(R^3)$ has compact support. Let $p \in [2, \infty)$. Prove that there exists $C > 0$ such that:

(a)
$$
|\nabla u(x,t)| \leq C(1+t)^{-1}
$$
 for all $(x,t) \in \mathbb{R}^3 \times [0,\infty)$,
\n(b) $\int_{\mathbb{R}^3} |\nabla u(x,t)|^p dx \leq C(1+t)^{2-p}$ for all $t \geq 0$.

Problem 7. Suppose $u \in C^2(\mathbb{R}^n \times [0, \infty))$ is a solution of

$$
\begin{cases}\n u_{tt} - \Delta u = 0 & \text{on } \mathbb{R}^n \times [0, \infty), \\
 u(x, 0) = \phi(x) & x \in \mathbb{R}^n, \\
 u_t(x, 0) = \psi(x) & x \in \mathbb{R}^n,\n\end{cases}
$$

where $\phi, \psi \in C^{\infty}(\mathbb{R}^n)$ have compact support. Prove that there exists $C, T > 0$ such that

$$
\int_{\mathbf R^n}\frac{(|u_t|+|\nabla u|)^4}{1+|x|+t}dx\ge Ct^{-n-1}
$$

for all $t \geq T$.

SOLUTIONS

Q1. G is C^1 since f is C^2 . Using the integral condition and the divergence theorem we obtain that $\int_{AB} G \cdot n dA = \int_B \text{div } G = 0$ on any ball B. Since G is C^1 it follows that div $G = 0$ everywhere. Taking the divergence of the first equation we obtain div $\nabla f = \Delta f$ = div $G = 0$, i.e. f is harmonic. Since f is also bounded, it must be constant.

Q2. Will type it soon.

Q3. Along the characteristic curves $\dot{x} = a, \dot{y} = b$, the solution u satisfies the equation $\dot{z} = z$, hence $z(t) = z(0)e^{t}$. For $t \in \mathbb{R}$, this is bounded exactly if $z(0) = 0$. The reasoning with $t \in \mathbb{R}$ applies for a, b constant functions, because then the characteristic curves do exist for all t, namely $x(t) = x_0 + at$, $y(t) = y_0 + bt$. [The same reasoning would apply for any locally Lipschizt functions $a(\cdot, \cdot)$, $b(\cdot, \cdot)$ that satisfy (eg) linear bounds $|a(x,y)| + |b(x,y)| \leq C_0(|x| + |y|)$, by some ODE theory that we may not assume known in this generality, and which would guarantee global existence in time for the characteristic curves.]

In contrast, for $\dot{x} = 1 + x^2$, $\dot{y} = 1 + y^2$, we cover the plane with characteristic curves $x(t) = \tan(t + c_0) = \tan(t + \arctan x_0), y(t) = \tan(t + c_1) = \tan(t + \arctan y_0)$ that exist for an interval of finite length $\leq \pi$ only. We do not need $z(0) = 0$ for $z(t) = z(0)e^{t}$ to be bounded on this interval. Specifically, we can choose initial data $x(0) = s, y(0) = -s, z(0) = f(s)$ for any bounded function f. Then

$$
u(\tan(t+\arctan s),\tan(t-\arctan s))=f(s)e^t
$$

i.e.,

$$
u(x,y) = \exp\left[\frac{1}{2}(\arctan x + \arctan y)\right] f\left[\frac{1}{2}(\arctan x - \arctan y)\right]
$$

Q4. We consider $v(x, y, z) := M + \frac{1}{6}((x - \frac{3}{2})^2 + (y - \frac{3}{2})^2 + (z - \frac{3}{2})^2)$ where M is yet to be determined. (It will turn out that we want $\overline{M} = -\frac{1}{8}$.) We want to show, by maximum principle, that $w := u - v \ge 0$.

First we note that on Ω , it holds $yv_{xx} + zv_{yy} + xv_{zz} = \frac{2}{6}(x+y+z) > 1$. Therefore $yw_{xx} + zw_{yy} + xw_{zz} < 0$ in Ω . Now w does have a minimum on the compact $\tilde{\Omega}$. If the minimum were in the interior, we'd have $w_{xx} \ge 0$, $w_{yy} \ge 0$, $w_{zz} \ge 0$ there, and thus $yw_{xx} + zw_{yy} + xw_{zz} \ge 0$ in violation of the DE. So min w is taken on at the boundary, where it equals $-\max v = -M - \frac{1}{6} \left((\frac{1}{2})^2 + (\frac{1}{2})^2 + (\frac{1}{2})^2 \right) = -M - \frac{1}{8}$, which equals 0 for our choice $M = -\frac{1}{8}$.

So we have $w \ge 0$, i.e., $u \ge v \ge M = -\frac{1}{8}$ on $\overline{\Omega}$.

Q5. We can design χ in such a way that $\chi(y) = 1$ for $y \le \ell$, $\chi(y) = 0$ for $y \ge 2\ell$, $|\chi'| \leq c/\ell, |\chi''| \leq c/\ell^2.$

Then

$$
0 = \int_{\Omega} \Delta u (u\chi) = -\int_{\Omega} \nabla u \cdot (\nabla (u\chi)) = -\int_{\Omega} |\nabla u|^2 \chi - \frac{1}{2} \int_{\Omega} \nabla (u^2) \cdot \nabla \chi
$$

=
$$
- \int_{\Omega} |\nabla u|^2 \chi + \frac{1}{2} \int_{\Omega} u^2 \Delta \chi - \frac{1}{2} \int_{\partial \Omega} u^2 \partial_{\nu} \chi \, dS.
$$

The boundary term vanishes; the second term, with u bounded by M , can be estimated by $M^2(c/\ell^2)(c\ell^{3/2})$, hence it goes to 0 as $\ell \to \infty$. Hence we find, in this limit, that $0 = -\int_{\Omega} |\nabla u|^2$, and $u \equiv const$. By DBC, $u \equiv$

Q6 & Q7. See Henry's sheet.

 $\ddot{}$

August **PDE Preliminary Exam,** 2012

In the following, unless otherwise stated, $\Omega \subset \mathbb{R}^n$ is an open, bounded set with C^{∞} -smooth boundary $\partial\Omega$. Denote $\Omega_T = \Omega \times (0,T]$, $\Gamma_T =$ parabolic boundary of $\Omega_T = \overline{\Omega}_T \setminus \Omega_T$.

Problem 1. Let $Q = \{(x, y) \in \mathbb{R}^2 : x > 0, y \ge 0\}$. Find the solution $u\in C^1(\Omega)$ of the initial-value problem

$$
-2xu_x + (x + y)u_y = 0, \quad (x, y) \in Q,
$$

$$
u(x, 0) = x, \quad x > 0.
$$

Problem 2. Let $\Omega = \{x \in \mathbb{R}^3 : 0 < |x| < 1\}, S = \{x \in \mathbb{R}^3 : |x| = 1\}.$ Suppose $u \in C^2(\Omega) \cap C^0(\Omega \cup S)$ satisfies $\Delta u \geq 0$ on Ω , $u = 0$ on S and u is bounded on Ω . Prove $u \leq 0$ on Ω .

Hint: Consider $v(x) = u(x) - \epsilon(1/|x| - 1)$ on an appropriate subdomain of Ω .

Problem 3. Suppose $\alpha \in \mathbb{R}, T > 0$ and $f \in C^0(\overline{\Omega})$ with $f > 0$ on Ω . Let $u\in C^{2,1}(\Omega_T)\cap C^0(\overline{\Omega}_T)$ be a solution of

$$
u_t = \Delta u + f(x) + \alpha u \quad \text{on } \Omega_T,
$$

$$
u = 0 \text{ on } \Gamma_T.
$$

Prove $u \ge 0$ and $u_t \ge 0$ on $\Omega \times [0, T]$.

 \sim

Problem 4. Let $a, b \in \mathbb{R}, T > 0$. Suppose $\phi, \psi \in C^{\infty}(\overline{\Omega})$ and $u \in C^2(\Omega_T) \cap$ $C^0(\overline{\Omega}_T)$ is a solution of

$$
u_{tt} - \Delta u + au_{x_1} + bu = 0 \text{ on } \Omega_T,
$$

$$
u = 0 \text{ on } \partial\Omega \times (0, T],
$$

$$
u = \phi \text{ on } \Omega \times \{t = 0\},
$$

$$
u_t = \psi \text{ on } \Omega \times \{t = 0\}.
$$

Denoting the energy $E(t) = \frac{1}{2} \int_{\Omega} (u_t^2 + |\nabla u|^2) dx$, prove $E(t) \leq E(0)e^{kt}$ for all $t \in [0, T]$, for some constant $k > 0$. Here $x = (x_1, ..., x_n) \in \mathbb{R}^n$.

Problem 5. Let $Q = \{(x,t) : x > 0, t > 0\}$. Find the solution $u \in$ $C^2(Q) \cap C^1(\overline{Q})$ of \sim \sim \sim

$$
u_{tt} - u_{xx} = 0, \quad (x, t) \in Q,
$$

$$
u(x, 0) = x, \quad x > 0,
$$

$$
u_t(x, 0) = -1, \quad x > 0,
$$

$$
u_x(0, t) + tu(0, t) = 1, \quad t > 0.
$$

Problem 6. Consider the heat equation

$$
u_t = \Delta u \text{ on } \Omega_T
$$

and define $E(t) = \int_{\Omega} u(x, t)^2 dx$, $t \in [0, T]$. With Dirichlet boundary conditions $u = 0$ on $\partial\Omega \times (0, T]$, in order to prove backward uniqueness of solutions, it is sufficient to establish $E'^2 \leq EE''$ on [0,T]. Prove the same inequality for Robin boundary conditions $\partial u/\partial n = g(x)u$ on $\partial \Omega \times (0,T], g \in$ $C^0(\partial\Omega)$.

Problem 7. Let $G(x, y)$ be the Green's function for $-\Delta$ on Ω with Dirichlet boundary conditions. Define $g(x) = \int_{\Omega} G(x, y) dy, x \in \overline{\Omega}$. Suppose $u \in$ $C^2(\Omega) \cap C^0(\overline{\Omega})$ is a solution of

$$
-\Delta u = e^{-u} \text{ on } \Omega,
$$

$$
u = 0 \text{ on } \partial\Omega.
$$

(a) Find $-\Delta g$.

(b) Prove there exists a constant $m > 0$ such that $mg \le u \le g$ on Ω . Express m in some explicit form involving g .

PDE Preliminary Exam, January 2012

In the following $\Omega \subset \mathbb{R}^n$ is an open, bounded set with C^{∞} - smooth boundary $\partial\Omega$. Denote $\Omega_T = \Omega \times (0,T]$, $\Gamma_T =$ parabolic boundary of $\Omega_T = \overline{\Omega}_T \setminus \Omega_T$.

Problem 1. Find all positive solutions u defined on all of \mathbb{R}^2 to the equation $xu_x + yu_y = (x^2 + y^2)/u.$

Problem 2. Suppose $f \in C^0(\partial\Omega)$, $f \ge 0$ on $\partial\Omega$. Show that if a solution $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ to the boundary-value problem

$$
-\Delta u = \frac{1}{1+u^2} \text{ on } \Omega,
$$

$$
u = f \text{ on } \partial\Omega,
$$

exists, then it is unique.

Problem 3. Suppose $u \in C^2(\mathbb{R}^3 \times [0, \infty))$ is a solution of

$$
u_{tt} - \Delta u = 0 \text{ on } \mathbb{R}^3 \times [0, \infty),
$$

$$
u(x, 0) = 0, \quad x \in \mathbb{R}^3,
$$

$$
u_t(x, 0) = g(x), \quad x \in \mathbb{R}^3,
$$

where $g \in C^2(\mathbb{R}^3) \cap L^2(\mathbb{R}^3)$. Prove that there exists $C > 0$ such that

$$
\sup_{x\in\mathbb{R}^3}\int_0^\infty u(x,t)^2\;dt\leq C\|g\|_{L^2(\mathbb{R}^3)}^2.
$$

Problem 4. Let $T > 0$ and suppose $f \in C^1(\mathbb{R})$, $f(0) = 0$. Consider the problem

$$
u_t = \Delta u + f(u) \text{ on } \Omega_T,
$$

$$
u=0 \ \ \text{on} \ \ \Gamma_{\mathrm{T}}.
$$

Prove this has a solution $u \in C^{2,1}(\Omega_T) \cap C^0(\overline{\Omega}_T)$ and that the solution is unique.

Problem 5. Let $\Omega = (0, \pi), Q = \Omega \times (0, \infty), f \in C^{0}([0, \pi]), f(0) = f(\pi) = 0.$ Prove the problem $2 \cdot 2$

$$
u_t = u_{xx} + u^2 \text{ on Q},
$$

\n
$$
u = 0 \text{ on } \partial\Omega \times (0, \infty),
$$

\n
$$
u = f \text{ on } \Omega \times \{t = 0\},
$$

has no solution $u \in C^{2,1}(Q) \cap C^0(\overline{Q})$ if $I = \int_0^{\pi} f(x) \sin x \, dx$ is sufficiently large and positive.

Hint: Derive a differential inequality for $F(t) = \int_0^{\pi} u(x, t) \sin x \, dx$ and obtain a contradiction.

Problem 6. Suppose $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ is a solution of

$$
\Delta u = u^3 - u \text{ on } \Omega,
$$

$$
u = 0 \text{ on } \partial \Omega.
$$

Prove

(a) $-1 \le u \le 1$ on Ω , (b) $|u(x)| \neq 1$ for all $x \in \Omega$.

Problem 7. Let $T > 0, 1 < p \leq m$. Suppose $\phi, \psi \in C^{\infty}(\overline{\Omega})$ and $u \in$ $C^2(\Omega_T) \cap C^0(\overline{\Omega}_T)$ is a solution of

$$
u_{tt} - \Delta u + u_t |u_t|^{m-1} = u|u|^{p-1} \text{ on } \Omega_T,
$$

\n
$$
u = 0 \text{ on } \partial\Omega \times (0, T],
$$

\n
$$
u = \phi \text{ on } \Omega \times \{t = 0\},
$$

\n
$$
u_t = \psi \text{ on } \Omega \times \{t = 0\}.
$$

Denote $H(t) = \frac{1}{2} ||u_t(\cdot, t)||^2_{L^2(\Omega)} + \frac{1}{2} ||\nabla u(\cdot, t)||^2_{L^2(\Omega)} + \frac{1}{p+1} ||u(\cdot, t)||^{p+1}_{L^{p+1}(\Omega)},$
 $t \in [0, T]$ (*H* is not the energy for the p.d.e.). Prove that for some constant $c > 0, H(t) \leq H(0)e^{ct}$ for all $t \in [0, T]$. Hint: Calculate $\dot{H}(t)$.

Prelim Aug 2011 Partial Differential Equations

 \bullet

Problem 1:

A

Prove that every positive harmonic function in all of \mathbb{R}^n is a constant. Conclude that every semi-bounded harmonic function in all of \mathbb{R}^n is a constant.

Problem 2:

Show that the damped Burger's equation $u_t + uu_x = -u$, for $x \in \mathbb{R}$, $t \ge 0$, with initial data $u(x, 0) = \phi(x)$ (for a positive C^1 function ϕ) has a global solution for $t \geq 0$, provided $\phi'(x) > -1$.

Problem 3:

Let $Q = \mathbb{R}^n \times (0, \infty)$, $f \in L^1(\mathbb{R}^n)$, and let $u \in C^{2,1}(Q) \cap C^0(\overline{Q})$ be the solution of the problem

$$
u_t - \Delta u + u = 0 \quad \text{for } t > 0, x \in \mathbb{R}^n
$$

$$
u(x, 0) = f(x) \quad \text{for } x \in \mathbb{R}^n.
$$

subject to the growth condition $|u(x,t)| \leq Ae^{\alpha x^2}$ for $x \in \mathbb{R}^n$ and $t \geq 0$, with certain positive constants A, α . Show that

$$
||u(\cdot,t)||_{L^{\infty}}(\mathbf{R}^n) \leq C t^{-n/2} e^{-t} ||f||_{L^1(\mathbf{R}^n)}
$$

for all $t > 0$.

Problem 4:

Let $Q = \mathbb{R}^n \times (0, \infty)$, $f \in L^1(\mathbb{R}^n)$, and $g \in C^0[0, \infty) \cap L^1(0, \infty)$. Assume that $\lim_{t\to\infty} g(t)$ exists. Suppose $u \in C^{2,1}(Q) \cap C^0(\tilde{Q})$ satisfies

$$
u_t - \Delta u = g(t) \quad \text{on } Q
$$

$$
u = f \quad \text{on } \mathbb{R}^n \times \{t = 0\}
$$

and that the usual growth condition that implies uniqueness is satisfied. Show

$$
\lim_{t \to \infty} u(x,t) = \int_0^\infty g(t) dt
$$
 and
$$
\lim_{t \to \infty} u_t(x,t) = 0
$$

for each $x \in \mathbb{R}^n$.

Problem 5:

 \mathcal{A}

Assume in a bounded domain $\Omega \subset \mathbb{R}^n$, we have a solution $u \in C^0(\overline{\Omega}) \cap C^2(\Omega)$ to $\Delta u = u^3 - 1$ and a solution v to $\Delta v = v - 1$, each vanishing at the boundary. Show that $0 < v \leq u \leq 1$ in Ω .

Problem 6:

Let $g \in C^2(\mathbf{R}^3)$ satisfy the conditions

$$
|g(x)| < C \quad \text{and} \quad \int_{\mathbf{R}^3} |\nabla g(x)| \, dx < 4\pi C \quad \text{and} \quad \lim_{|x| \to \infty} g(x) = 0
$$

and consider a classical solution u to the wave equation

$$
u_{tt} - \Delta u = 0 \qquad \text{in } \mathbf{R}^3 \times (0, \infty)
$$

$$
u(x, 0) = C \qquad \text{for } x \in \mathbf{R}^3
$$

$$
u_t(x, 0) = g(x) \qquad \text{for } x \in \mathbf{R}^3.
$$

where C is a given positive constant. Prove that $u(x,t) > 0$ for all $(x,t) \in$ $\mathbf{R}^3 \times [0,\infty)$.

Problem 7:

Suppose $\phi \in C^{\infty}(\mathbb{R}^n)$ and $\psi \in C^{\infty}(\mathbb{R}^n)$ have support contained in the ball $B(0,r)$, and that $u \in C^2(\mathbf{R}^n \times [0,\infty))$ is a solution to

$$
u_{tt} - \Delta u + \frac{1}{1+|x|} u_t = 0 \qquad \text{on } \mathbf{R}^n \times (0, \infty)
$$

$$
u(x, 0) = \phi(x) \qquad \text{for } x \in \mathbf{R}^n
$$

$$
u_t(x, 0) = \psi(x) \qquad \text{for } x \in \mathbf{R}^n
$$

Define $E(t) := \frac{1}{2} \int_{\mathbf{R}^n} (u_t^2 + |\nabla u|^2) dx$ and $I(t) := \int_t^{\infty} \int_{\mathbf{R}^n} \frac{1}{1+|x|} (u_t^2 + |\nabla u|^2) dx ds$. (a) Prove that $\int_t^{\infty} \int_{\mathbf{R}^n} \frac{1}{1+|x|} u_t^2(x,s) dx ds \leq E(t)$.

For your information: it can be proved that $I(t) \leq C E(t)$. You do not need to do this; only be assured of the corollary that $I(t)$ is finite.

(b) Prove that there exists a positive constant C such that $I(t) \geq CE(2t)$ for all $t \ge r$ (with the r from the support of the data). Hints: $I(t) \ge \int_t^{2t} \dots$ You may assume that the support of u has the same properties as solutions to the wave equation whose initial data have support in $B(0, r)$. And you may assume that $E(t)$ is non-increasing in t.

In the following $\Omega \subset \mathbb{R}^n$ is an open, bounded set with C^{∞} - smooth boundary $\partial\Omega$. Denote $\Omega_T = \Omega \times (0,T]$.

Problem 1. Prove the pde $u_x + 2xu_y = (y^2 - x^2)u^2 + 1$ cannot have a solution $u \in C^1(\mathbb{R}^2)$ in the entire plane \mathbb{R}^2 .

Problem 2. Let $a \in \mathbb{R}$. Show the problem

$$
\Delta u = u^5 + a \text{ on } \Omega,
$$

 $u=0$ on $\partial\Omega$,

has at most one solution $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$.

Problem 3. Let $Q = \mathbb{R}^n \times (0, \infty)$ and suppose $u \in C^{2,1}(Q) \cap C^0(\overline{Q})$ is a solution of

$$
u_t - \Delta u = 0 \text{ on } Q,
$$

$$
u = g(x) \text{ on } \mathbb{R}^n \times \{t = 0\},
$$

satisfying the growth condition

 $\mathcal{L}^{\mathcal{L}}$

$$
|u(x,t)| \le Ae^{\alpha |x|^2}, \quad (x,t) \in Q,
$$

where A, α are positive constants.

(a) Assume that $g \in C^0(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$ does not depend on a variable x_i for some fixed j . Prove that the same is true for u .

(b) Prove that if $g \in C^{\infty}(\mathbb{R}^n)$ is a harmonic function on \mathbb{R}^n , the solution u is time independent.

Problem 4. Let $\alpha, T > 0, \gamma \in \mathbb{R}$. Suppose $\phi \in C^0(\overline{\Omega})$ and $c \in C^0(\overline{\Omega}_T)$ with $c \geq \gamma$ on $\overline{\Omega}_T$. Suppose $u \in C^{2,1}(\Omega_T) \cap C^1(\overline{\Omega}_T)$ is a solution of

 $\sim 10^{11}$ $\sim 10^{11}$

بالمتكب والمتو

والأستقام ومتناجا المتاريات

$$
u_t - \Delta u + c(x, t)u = 0 \text{ on } \Omega_T,
$$

$$
u = \phi \text{ on } \Omega \times \{t = 0\},
$$

$$
\partial u/\partial n + \alpha u = 0 \text{ on } \partial \Omega \times (0, T].
$$

Prove $|u| \le \sup_{\overline{\Omega}} |\phi| e^{-\gamma t}$ on Ω_T and prove u is unique.

Problem 5. Solve explicitely the initial-boundary value problem

 $u_{tt} - 4u_{xx} = 0$, $x > 0$, $t > 0$,

with initial data

$$
u(x, 0) = x, \quad x > 0,
$$

$$
u_t(x, 0) = -2, \quad x > 0,
$$

and boundary condition

$$
u_x(0,t) + tu(0,t) = 1, \quad t > 0.
$$

Problem 6. Suppose $\Omega \subset \mathbb{R}^2$ and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ is a solution of

$$
(1+u_y^2)u_{xx} + (1+u_x^2)u_{yy} - 2u_xu_yu_{xy} = 0
$$
 on Ω .

Show $\inf_{\overline{\Omega}} u = \inf_{\partial \Omega} u.$

Problem 7. Let $T > 0, a \in \mathbb{R}$. Suppose $\phi, \psi \in C^{\infty}(\overline{\Omega})$ and $u \in C^2(\Omega_T) \cap$ $C^1(\overline{\Omega}_T)$ is a solution of

$$
u_{tt} - \Delta u + au_t = 0 \text{ on } \Omega_T,
$$

$$
u = \phi \text{ on } \Omega \times \{t = 0\},
$$

$$
u_t = \psi \text{ on } \Omega \times \{t = 0\},
$$

$$
\frac{\partial u}{\partial n} = 0 \text{ on } \frac{\partial \Omega \times (0, T]}{\partial n}.
$$

Prove that for $t \in [0, T]$ the following inequality holds $E(t) \leq E(0)e^{a_0 t}$, where $E(t) = \frac{1}{2} \int_{\Omega} (u_t^2 + |\nabla u|^2) dx$ and $a_0 = \max\{0, -2a\}.$

PDE Prelim Exam, August 2010

In the following $\Omega \subset \mathbb{R}^n$ is an open, bounded set with C^{∞} - smooth boundary $\partial\Omega$. Denote $\Omega_T = \Omega \times (0, T)$.

Problem 1. Suppose $u \in C^1(\mathbb{R}^2)$ is a solution of $yu_x - xu_y = u$ on the entire plane \mathbb{R}^2 . Prove $u = 0$ on \mathbb{R}^2 .

Problem 2. Suppose $f, g \in C^1(\mathbb{R})$ with $f(0) = g(0) = 0, f' > 0$ and $g' > 0$ on $\mathbb{R}\setminus\{0\}$. Suppose $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ is a solution of

```
\Delta u = f(u) on \Omega,
```
 $\frac{\partial u}{\partial n} + g(u) = 0$ on $\partial \Omega$.

(a) Show $u = 0$ on Ω using the maximum priciple.

(b) Show $u = 0$ on Ω using the energy method.

Problem 3. Let $T > 0, c \in C^0(\overline{\Omega}_T)$. Suppose $u \in C^{2,1}(\Omega_T) \cap C^0(\overline{\Omega}_T)$ satisfies

 $u_t - \Delta u + c(x, t)u \leq 0$ on Ω_T ,

 $u \leq 0$ on Γ_T (= $\overline{\Omega}_T \setminus \Omega_T$ = parabolic boundary of Ω_T).

Prove $u \leq 0$ on Ω_T .

Hint: Consider $v = ue^{-Mt}$ for a suitable constant M.

Problem 4. Suppose $u \in C^2(\mathbb{R}^3 \times [0, \infty))$ is a solution of

$$
u_{tt} - \Delta u = 0 \text{ on } \mathbb{R}^3 \times [0, \infty),
$$

$$
u(x, 0) = 0, \quad x \in \mathbb{R}^3,
$$

$$
u_t(x, 0) = g(x), \quad x \in \mathbb{R}^3,
$$

where $g \in C^2(\mathbb{R}^3)$ has compact support. Prove that there exists $C > 0$ such that (a) $|u_t(x,t)| \leq C(1+t)^{-1}$ for all $(x,t) \in \mathbb{R}^3 \times [0,\infty)$, and

(b) $(\int_{\mathbb{R}^3} |u_t|^6 dx)^{1/6} \leq C(1+t)^{-2/3}$ for all $t \geq 0$.

Problem 5. Suppose $u \in C^2(\mathbb{R}^n)$ satisfies $\Delta u + u^2 + 2u \leq 0$ on \mathbb{R}^n . Show that the inequality $u \geq 1$ cannot hold on all of \mathbb{R}^n . Hint: Consider the auxiliary function $v(x) = \frac{3}{2n}(R^2 - |x|^2)$ on $B(0, R)$.

Problem 6. Suppose $n \leq 3$, $\phi \in C^3(\mathbb{R}^n)$, $\psi \in C^2(\mathbb{R}^n)$ and ϕ, ψ have compact support. Suppose $u \in C^2(\mathbb{R}^n \times [0,\infty))$ is a solution of

$$
u_{tt} - \Delta u = u^3 \text{ on } \mathbb{R}^n \times (0, \infty)
$$

$$
u(x, 0) = \phi(x), \quad x \in \mathbb{R}^n,
$$

$$
u_t(x, 0) = \psi(x), \quad x \in \mathbb{R}^n,
$$

where $\int_{\mathbb{R}^n} \phi(x)^2 dx > 0$. Define the energy
 $E(t) = \int_{\mathbb{R}^n} (\frac{1}{2}u_t^2 + \frac{1}{2}|\nabla u|^2 - \frac{1}{4}u^4)dx$ and $F(t) = \int_{\mathbb{R}^n} u^2 dx$ for $t \ge 0$. Assume $E(0) < 0.$

(a) Prove $E(t)$ is constant in t.

(b) Find a lower bound for $||u(\cdot,t)||_{L^4(\mathbb{R}^n)}$ and prove $F''(t) \geq 6||u_t||_{L^2(\mathbb{R}^n)}^2$ for each t .

(c) Prove $(F(t)^{-\frac{1}{2}})'' \le 0$ for all $t > 0$ (note $(F(t)^{-\frac{1}{2}})'' = -\frac{1}{2}(FF' \frac{3}{2}F'^2$) $F^{-\frac{5}{2}}$).

(d) Provided that $F'(t) > 0$ for some $t > 0$, show $F(t) \to \infty$ as $t \to t_0^-$ for some finite $t_0 > 0$.

Problem 7. Let $Q = \mathbb{R}^n \times (0, \infty), n = 2, 3$ and $f \in C^0(\overline{Q})$. Suppose $u \in C^{2,1}(Q) \cap C^{0}(\overline{Q})$ is a solution of

$$
u_t - \Delta u = f(x, t) \text{ on } Q,
$$

$$
u = 0 \text{ on } \mathbb{R}^n \times \{0\}.
$$

Assume $\int_{\mathbb{R}^n} f(x,t)^2 dx \leq k$ for all $t \geq 0$; and that for each $\varepsilon > 0$ there exists $C_{\varepsilon} > 0$ such that $|f| \leq C_{\varepsilon} e^{\varepsilon |x|^2}$ on Q. Assume $|u| \leq Ae^{a|x|^2}$ holds on Q for some constants $a, A > 0$. Show, for some $C, \alpha > 0$, $|u| \leq Ct^{\alpha}$ holds on Q. Give α explicitly and explain if your reasoning depends on n. Explain the purpose of $e^{a|x|^2}$.