
Topology Preliminary Examination

August 2024

Your score will be based on answers to questions distributed as follows:

six questions from Part A, and any three questions from Parts B and C,

making nine questions in all.

Part A: Point set topology, fundamental group and covering spaces

1. Let X ; Y be topological spaces, and let X � Y be given the product topology. Let � W

X � Y ! X be projection to the first factor.

(a) Prove that � is an open map.

(b) Show by means of an example that � is not necessarily a closed map.

(c) Compactness of which factor X ; Y guarantees that � is a closed map? Justify your

answer.

2. Let p W X ! Y be a closed, continuous, surjective map such that p�1.fyg/ is compact for

each y 2 Y . Prove that if X is locally compact, then so is Y .

3. (a) Let X be a topological space and let Y be a metric space. Let fn W X ! Y .n D 1; 2; : : : /

be a sequence of continuous functions. Show that if the sequence .fn/ converges uniformly

to f W X ! Y , then the sequence .fn.xn// converges to f .x/ .

(b) Give an example, with justification, of a sequence of functions fn W Œ0; 1� ! Œ0; 1� that

converges, but not uniformly. (If you use the uniform limit theorem to justify your example,

prove it.)

4. Let .X ; d/ be a metric space. A map f W X ! X is a contraction if there exists ˛ 2 Œ 0 ; 1 /

such that d.f .a/ ; f .b// � ˛ d.a ; b/ for all a ; b 2 X .

Prove that if the metric space X is compact and f W X ! X is a contraction, then there exists

a unique point x 2 X with f .x/ D x .

5. Let X D
⋃

1

nD1 Xn , where each Xn is a simply connected open subspace of X , and where

Xn � XnC1 for each n � 1 . Show that X is simply connected.



6. Let X be the quotient space B2= � , where B2 is the unit disk fz 2 C
∣

∣ jzj � 1g and �

is the equivalence relation on B2 generated by

z � z e2�i=5 . jzj D 1 / ;

i.e. each point z of the boundary is identified with �.z/ , where � is rotation through 2�=5

about the center of B2 .

(a) Compute the fundamental group of X .

(b) Describe the universal covering map p W eX ! X and the associated group of covering

transformations.

(c) Prove that each continuous map f W X ! S1 is nullhomotopic.

7. Let B D S1 _ RP 2
i.e. B is the result of gluing together a copy of the unit circle and a copy

of the real projective plane at a single point.

(a) Show that for each n D 2; 3; : : : there exists an n–sheeted connected regular covering of

B , and also that for each n D 3; 4; : : : there exists an n–sheeted connected irregular covering

of B . Explain why 2–sheeted coverings are forced to be regular.

(b) Use one of the coverings of part (a) of this question to show that the fundamental group of

B is non-Abelian.

8. Let p W E ! B be a covering map, with E path connected.

(a) Prove that p is an open map.

(b) Suppose that the set p�1.b/ is finite for some b 2 B . Prove that p is a closed map.

(c) Give an example, with justification, of a covering map p W E ! B that is not a closed

map.

Part B: Differential topology

9. (i) Prove: The space of rank one 2 � 2 real matrices (that is, nonzero matrices with determinant

zero) is a 3-dimensional submanifold V of M2�2.R/ D R
4.

(ii) Find the tangent space TAV of V at the matrix A 2 V given, expressed as a subspace of

M2�2.R/.

A D

(

1 0

0 0

)



10. Let f W X ! RN be an injective immersion, where X is a k-dimensional manifold and

N > 2k C 1. Define the maps:

h W X � X � R ! RN ; h.x; y; t/ D t .f .x/ � f .y//:

g W TX ! RN ; g.x; v/ D df .x/Œv�:

(i) Show there exists a 2 RN nonzero which is neither in the image of h nor in the image of g.

(Hint: Sard’s theorem.)

(ii) Show that for such a, if H � RN is the orthogonal complement of the one-dimensional

subspace spanned by a and � W RN ! H the orthogonal projection, then � ı f W X ! H is

an injective immersion.

11. (i) If X is a compact smooth manifold with boundary, there is no smooth map X ! @X that is

the identity on @X (that is, @X is not a smooth retract of X .)

(ii) Let f W Bn ! Bn be a smooth map, where Bn is the closed unit ball in Rn, a manifold

with boundary. Use part (i) to prove that f has a fixed point. (That is, prove the smooth

Brouwer fixed-point theorem.) Hint: if f has no fixed point, use the chord from x to f .x/ to

define a smooth retraction from f to its boundary.

12. (i) Let f W X ! Y be a smooth map transversal to a submanifold Z � Y (X compact.). State

the condition on dimensions under which the mod 2 intersection number I2.f I Z/ is defined,

and give its definition.

(ii) if X is compact, Z � Y a closed submanifold with codimY .Z/ D dim.X/ and Y is

contractible, then for any f W X ! Y , I2.f; Z/ D 0.

can be contractible. (Hint: consider the identity map.)

13. In this problem you may use the known fact that the degree of the antipodal map of Sn is

.�1/nC1.

(i) Prove that any (smooth) map Sn ! Sn with degree different from .�1/nC1 must have a

fixed point.

(ii) Show that if Sn � RnC1 admits a tangent vector field without singularities, then the

antipodal map is homotopic to the identity.

Hint: Use the vector field to define a map of Sn which is both homotopic to the identity and

has no fixed points.



Part C: Algebraic topology

14.
0 0 0

0 A B C 0

0 D E F 0

0 G H K 0

0 0 0

The figure displays a commutative diagram of Abelian groups and homomorphisms. Given that

all three rows are exact and that the first two columns are exact, prove that the third column

0 ! C ! F ! K ! 0 is exact at C , and also at K . (In fact this column is also exact at

F , but you do not need to prove this.)

15. (a) Given a topological space X , let SX denote the suspension of X . Prove, using the

axioms for homology, that eH n.SX/ Š eH n�1.X/ for all n 2 Z .

(b) Use the result of part (a) of this question to calculate the reduced homology groups of the

n–sphere Sn , for n � 1 .

16. Show that the quotient map S1 � S1 ! S2 that collapses the subspace S1 _ S1 to a point

is not nullhomotopic, by showing that it induces an isomorphism of second homology groups.

On the other hand, show that any map S2 ! S1 � S1 is nullhomotopic.

17.

v

vv

v

e1 e1

e2

e2

e3

L

U

Use simplicial homology of the cell complex illustrated to calculate the homology groups of

the Klein bottle.

18. Let X be the space obtained from the unit square I � I � R
2 by identifying the four corners

of the square to a single point (X is analogous to the “triangular parachute” in Hatcher, with

a square instead of a triangle). Compute the simplicial homology groups of X .
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��������������������� ��!"#$%&�'$&�(')#*'+&,�-�#.$&/(01%&�2�#�/���((�/&'+&�&(�$'1�#�&1'&/'#(#$%&�314&�&�'1'&/#*'+&(�/&-�#.$&/25678�!9:�:�;<8 = < >?@A:����B=;�:�@B=;�:� CA;=�DED�&'F.&�G��(3#�4'#-#$#01H�$(-�H&2I1J�&'KLM.&31(N#1�'H#/-�H'(�.(-�H&(#*F 2"+#O'+�''+&�&&P1('31(N#1�'#-&�(�.(&'(QLR#*FH#�'�1�1�0KLM�&(-&H'1%&$�2I11J�&'S.&�H#�'1��#�(T(��N&H'1%&TH$#(&3/�-*�#/F '#�'#-#$#01H�$(-�H&UTO1'+'+&-�#-&�'�'+�'SVWIXYZJ1(H#/-�H'*#�&�H+Y[U2"+#O'+�'U1(G��(3#�42\DI1J��#%&��(&-���.$&/&'�1H(-�H&H���#'H#�'�1�����H#��'�.$&31(]H�&'&(&'2I11Ĵ (&-��'I1J'#-�#%&'+�''+&(-�H&F#*�1-(H+1'_*��H'1#�(̀ �a�L,bcdTO1'+'+&'#-#$#0�3&e�&3.�'+&�#�/�ff̀ffgf̀I�JfhàbL àbg(�-ijklf̀ImJn ÌYJffmnYf1(�#'(&-���.$&2opqrst#�u[I�L,JTH#�(13&�'+&*��H'1#� v̀[F�v̀ImJg�w�xmxuw v̀ImJgmnuLuxmx,y���-+Ìzn v̀JImJ*#�{|uT��3H#/-�'&1'(�#�/2}D~��qprp�q��/&'�1H(-�H&IFL�J1(������1*H$#(&3.#��3&3(&'(��&H#/-�H'2I1J�&'IFL�J.&�-�#-&�/&'�1H(-�H&2��#%&�F1(H#/-$&'&��3�]H#/-�H'I'+�'1(T&���$'#�H#��'�.$&��1#�#*H#/-�H'(�.(&'(J2I11J��#%&��/&'�1H(-�H&IFL�J1(-�#-&�1*��3#�$�1*'+&31('��H&*��H'1#�'#�-#1�'m�c �ImLm�J1(�-�#-&�*��H'1#�#�FI-�&1/�0&#*�H#/-�H'(&'1(H#/-�H'2J�D�&'�.&�H#/-�H'/&'�1H(-�H&2�&'̀Wx �̀x �̀xyyy.&��1�H�&�(1�0(&��&�H&#**��H'1#�(1��I�JH#�%&�01�0-#1�'O1(&'#̀ [�I�J2I1J��#%&'+�''+&(&'X̀WL̀�LyyyZ1(&��1H#�'1��#�(#��2I11J��#%&'+�'T1�*�H'T̀�c`��1*#�/$�#��2�D�&'F�d� .&�H#/-�H'(/##'+&/.&33&3(�./��1*#$32I1J��#%&'+�'01%&��H#�'1��#�(/�-`�Fc ���d��W��3�����T'+&�&&P1('(�(/##'+/�-T��Fc��(�H+'+�'(�-i��ff̀ImJn�ImJff|�yopqr�t1�('��0�&̀ /��.&�--�#P1/�'&3.��(/##'+/�-��Fcd��W2�+&��#�/�$1_&�'##.'�1��/�-�'��1�0%�$�&(1���T��3(+#O'+�'�1(�$(#H$#(&'#̀ 2I11J��#%&'+�''+&/�-�*#��31�I1J1(+#/#'#-1H'# T̀1*�1((��H1&�'$�(/�$$2 ,



����������	
�������������
��������������������	��������������� !" #��$�%�&�'()*+&�)',-.-/+�(0&�)1(�)*2-.-)3//��(0&/+�(0&�)45+678��9:� ;" #��$�)/''�$/+*91<4=<<>1�$�)?*�()&(0*�@/�+6)A�(+6)*')�B24104C'/*?���$�70D�(�6�0+8',9+�+6+(#0�(+(3/+�(0E<+67?)��$0)�')$'F�$+��$�07�6�0�3/+�(0EG 0)+(�H?8+(%+8?�',95+67�$�(�,'(��$�'(�$'H'6+8H('?*I1-40)+/+60,'871&'/*?��0�)70/�6)0'6421004J067�$��+6H�6�)*+&�)KLMI1-4+67KNI1-4,'(<OI1-42P�104Q('%��$+�0,<RST0)+)��',/�+)?(�U�('+679:ST; SV0)+8'&+883�0*)&$0�U/+*1F$�(�WXY45�$�691<4$+)/�+)?(�U�('06SV21004Z�[6�A)��',/�+)?(�\B,'()?#)��)',+70D�(�6�0+#8�/+60,'87106&8?706H+6�E*8+6+�0'6',F$3A)��',/�+)?(�U�('B0)F�88]7�[6�706+70D�(�6�0+#8�/+60,'8742�̂���<!_!̀!a!b#��$�,'88'F06H)?#)*+&�)',Sc:<0)�$�&0(&8�',(+70?)d&�6��(�7+�1ef!\4g_0)�$�&0(&8�',(+70?)d&�6��(�7+�1f!\4g`0)�$�)�(+0H$�806�)�H/�6�h'0606H1ei!\4F0�$1ej!\4ga0)�$�)�(+0H$�806�)�H/�6�h'0606H1ed!\4F0�$1d!\4gb0)�$�)�(+0H$�806�)�H/�6�h'0606H1j!\4F0�$1i!\42���k=<l_l`lalb2104C'6)�(?&�+fm)$����7&'%�(06H/+*W:nk ; k5F0�$ nk &'66�&��72Z�)&(0#�3'?(/+*WF0�$)?o&0�6�&+(��'&'6%06&��$�(�+7�(�$+�0�0)067��7+&'%�(06H/+*g0�0)[6��'�6$+6&�3'?(7�)&(0*�0'6#3/�+6)',+)?0�+#83+66'�+��770+H(+/21004p0%�+6�E*80&0�7�)&(0*�0'6',�$�H('?*',&'%�(06H�(+6),'(/+�0'6),'(�$0)&'%�(06H/+*2q�104���r#�+[60��]70/�6)0'6+8(�+8%�&�'()*+&�5s Rr.r�$�70+H'6+82J'(+806�+(/+*<Ot1r45)$'F�$+��$�H(+*$u =v1w!<w4gwOrxRr.r0)�(+6)%�()+8�'�$�70+H'6+80,+67'6830,d0)6'�+6�0H�6%+8?�',<21004yz{|}~}�|����k #�+)/''�$/+60,'872�)/''�$/+*9:k; k0)+�z����z~����0,+�+63[E�7*'06��',91�$+�0)591�4=�45d0)6'�+6�0H�6%+8?�',�$�70D�(�6�0+8�91�4Ot1K�k42Q('%��$+�+��,)&$��U/+*',+&'/*+&�/+60,'871F0�$'?�#'?67+(34$+)'683[60��83/+63[E�7*'06�)2����6�$0)*('#8�/3'?/+3?)��$��6'F6,+&��$+��$�7�H(��',�$�+6�0*'7+8/+*'," 0)1ed4 ��2104Q('%��$+�+631)/''�$4/+*" ; " F0�$7�H(��70D�(�6�,('/1ed4 ��/?)�$+%�+[E�7*'06�21004�$'F�$+�0," R� ��+7/0�)+�+6H�6�%�&�'([�87F0�$'?�)06H?8+(]0�0�)5�$�6�$�+6�0*'7+8/+*0)$'/'�'*0&�'�$�07�6�0�32�}|~��)��$�%�&�'([�87�'7�[6�+/+*'," F$0&$0)#'�$$'/'�'*0&�'�$�07�6�0�3+67$+)6'[E�7*'06�)2 f



















Topology Preliminary Examination–August 2021

Instructions: solve 8 of the 10 problems given. For a passing grade, at least
6 problems must be given correct and complete solutions; including at least 2
from part I and 2 from part II.

PART I

1. Let the group G act by homeomorphisms on the Hausdorff space X, with
∼ the orbit equivalence relation: x ∼ y ↔ (∃g ∈ G)(y = gx). Let π : X → Y be
the quotient projection onto the space Y = X/ ∼.

(i) Show that if Y is given the quotient topology, π is an open map.

(ii) Let Γ = {(x, y) ∈ X ×X;x ∼ y} be the graph of ∼. Show that if Γ is a
closed subset of X ×X, then Y is Hausdorff (with the quotient topology.)

2. (i) Prove: A separable metric space cannot contain an uncountable dis-
crete set.

(ii) Show that C(R; [0, 1]) is not separable (with the uniform metric, d(f, g) =
supx∈R |f(x)− g(x)|).

3. Definition: A metric space (X, d) is proper if it has the Heine-Borel
property (bounded sets are precompact.)

(i) Let (X, d) be a proper metric space. Prove that X is complete, locally
compact and σ-compact.

(ii) Show that a metric space (X, d) is proper if and only if the distance
function to a point x 7→ d(x, x0) is a proper function on X.

4. Let X be locally compact Hausdorff and σ-compact, with compact ex-
haustion (Kn)n≥1. Define a metric on C(X) (real-valued continuous functions
on X) by:

ρ(f, g) =

∞∑
n=1

ρn(f, g), ρn(f, g) = min{ 1

2n
, sup
x∈Kn

|f(x)− g(x)|}.

Show that the topology induced by ρ on C(X) is equivalent to the topology of
uniform convergence on compact sets.

5. Definition: A family F of maps f : Rn → Rk is a locally Lipschitz family
if for all R > 0 we may find L > 0 (depending on R) so that, for all f ∈ F :

||x|| ≤ R, ||y|| ≤ R⇒ ||f(x)− f(y)|| ≤ L||x− y||.

Let F be a locally Lipschitz family of maps f ∈ C(Rn;Rk), which is also
bounded at each point (||f(x)|| ≤M(x) for all f ∈ F , with M(x) > 0 depending
on x, but not on f .) Show that any sequence fn ∈ F admits a subsequence
converging uniformly on compact sets to a map g ∈ C(Rn;Rk).

(You may assume the Arzelà-Ascoli theorem for maps from compact spaces.)

1



PART II

6. Let X ⊂ RN be a compact smooth embedded submanifold (of dimension
m < N). Prove that every continuous map f : X → Sn ⊂ Rn+1 may be
approximated by a smooth map, homotopic to f . That is, for any ε > 0 there
exists ĝ : X → Sn smooth, homotopic to f , and ε-close to f in the sup distance.
(Include the proof that the maps are homotopic.)

Hint. First argue we can approximate f by a smooth map g : X → Rn+1.
Then normalize g, proving first that 0 6∈ g(X).

7. Let M be a smooth manifold, f : M → Rs be a C1 map, N ⊂ Rs

a submanifold of codimension strictly greater than dim(M). Show that for
almost every v ∈ Rs the translated image f(M)+v has empty intersection with
N . (That is, the set of v ∈ Rs for which the intersection is not empty has
measure zero in Rs.)

8. Show that if h : Sn → Sn is homotopic to a constant, then h has a fixed
point and h maps some point x to its antipode −x. (You may assume h is
smooth.) If the fact that two maps are homotopic is used in your proof, include
the homotopy between them.

9. (i) Define ‘homotopy equivalence’ and ‘deformation retraction’, and prove
that ifX deformation retracts to a subspace A ⊂ X, thenX and A are homotopy
equivalent. (Note r = iA ◦ r if r : X → X, r(X) = A, is a retraction; where
iA : A→ X is the inclusion map.)

(ii) Suppose there exists a deformation retraction from the space X to a
point x0 ∈ X. Show that for each open neighborhood U of x0, there exists a
second open neighborhood V ⊂ U of x0, with the property that the inclusion:

i∗ : π1(V, x0)→ π1(U, x0)

is trivial.

10. Let M be a compact orientable surface of genus 2. Prove there exists
f : M → S1 continuous, which does not lift to a continuous map from M to R.
(Here ‘lift’ refers to the exponential covering map R→ S1.)

You may use diagrams to explain the steps in your proof.

2



Topology Preliminary Examination

August 2020

You may omit two questions from each part

Include justifications with your answers

Part A

1. Let X be a regular topological space, and let x ; y be distinct points of X . Prove that x ; y have

neighborhoods whose closures are disjoint.

2. Let X ; Y be topological spaces, with Y compact.

(a) (6 pts) Prove that the projection �1 W X � Y ! X ; .x ; y/ 7! x is a closed map.

(b) (4 pts) Let f W X ! Y be a function, not assumed to be continuous. The graph of f is the

following subset of X � Y : �f D f.x ; f .x// j x 2 Xg . Prove that if �f is closed in X � Y , then

f is continuous.

3. Let R be given the standard topology, and let A � R be the subspace A D
⋃

1

iD1

(

1
2iC1

; 1
2i

]

.

(a) (6 pts) Prove that A is locally compact, and that R n A is not locally compact.

(b) (4 pts) Find a locally compact subspace B of R such that A [ B is not locally compact.

4.

(a) (4 pts) Let X be a connected space such that each point of X has a path-connected neighborhood.

Prove that X is path-connected.

(b) (6 pts) Give an example of a connected space that is not path-connected.

5. Let .X ; d/ be a metric space, and let A � X be non-empty. Recall that given x 2 X , the distance

from x to A is d.x ; A/ D inffd.x ; a/ j a 2 Ag . For the remainder of this question it is assumed that

the non-empty subset A is compact.

(a) (4 pts) Prove that d.x ; A/ D d.x ; a/ for some a 2 A .

(b) (6 pts) Given � > 0 , define U.A ; �/ D fx 2 X j d.x ; A/ < �g . Prove that U.A ; �/ is an open

set containing A , and that if V is any open set containing A , then V contains U.A ; �/ for some

� > 0 .

6. Suppose that X is connected and Hausdorff, and that every proper closed subset of X containing

at least two points is disconnected. Prove that X n fxg is connected for every x 2 X .

7. Let p W X ! Y be a closed, continuous, surjective map such that p�1.fyg/ is compact for each

y 2 Y . Show that if X is Hausdorff, then so is Y .



8. Let .C ; d/ be a compact metric space, and let f W C ! C be a continuous function with no fixed

point, i.e. f .x/ ¤ x for each x 2 C . Prove that there exists ı > 0 such that d.x ; f .x// � ı for

each x 2 C .

Part B

9. Let X be the quotient space B2= � , where B2 is the unit disk
{

z 2 C
∣

∣ jzj � 1
}

and � is the

equivalence relation on B2 generated by

z � z e2�i=3 .jzj D 1/ ;

i.e. each point z of the boundary of B2 is identified with �.z/ , where � is rotation through 2�=3

about the center of B2 .

(a) (5 pts) Compute the fundamental group of X .

(b) (5 pts) Prove that every continuous map from X to the projective plane P 2 is nullhomotopic.

10.

(a) (4 pts) Prove that each covering map is an open map.

(b) (4 pts) Prove that each finite-sheeted covering map is a closed map.

(c) (2 pts) Give an example, with justification, of a covering map that is not a closed map.

11. Construct 4–sheeted covering maps pi W Ei ! S1 _ P 2 .i D 1; 2/ , with p1 regular, p2 not

regular and each Ei connected. Explain why your maps are covering maps and why they have the

required properties.

12. Let X be a compact metric space, and let p W eX ! X be a covering map. Prove that for some

� > 0 every ball B.x ; �/ in X is evenly covered.

13. Let X ; Y be topological spaces with respective basepoints x0 ; y0 .

Prove that �1.X � Y ; .x0 ; y0// is isomorphic to �1.X ; x0/ � �1.Y ; y0/ .



January 7, 2019

University of Tennessee

Topology Preliminary Examination

You may omit two questions from each part.

Part A

Question 1. Let X be an infinite set equipped with the finite complement topology. Prove
that every continuous map f : X → R is constant.

Question 2. Prove that the subspaces

X = ([−1, 1]× {0}) ∪ ({0} × [−1, 1]) and Y := ([−1, 1]× {0}) ∪ ({0} × [0, 1])

of R2 are not homeomorphic.

Question 3. Let A and B be disjoint compact subspaces of a Hausdorff space X. Prove
that there exist disjoint open sets U, V ⊂ X with A ⊂ U and B ⊂ V .

Question 4. Prove that every separable metric space is second countable. Deduce that
the Sorgenfrey line R` is not metrizable.

Question 5. Let D be any countable subset of R2. Prove that R2 \D is path connected.

Question 6. Prove that Q ⊂ R, equipped with the subspace topology induced from the
standard topology on R, is not locally compact.

Question 7. Prove that the one-point compactification of N ⊂ R (with the subspace
topology) is homeomoephic to {0} ∪ {1/n : n ∈ N} ⊂ R (with the subspace topology).

Question 8. Given a ∈ R \ {0}, define R/aZ as the quotient of R by the equivalence
relation

x ∼ y ⇐⇒ y = x+ ka for some k ∈ Z .

Show that R/aZ is homeomorphic to S1 .



Part B

Question 9. Let A be a path connected subspace of Rn, let Y be a path connected
topological space and let h : A → Y be a continuous map. Show that if h extends to a
continuous map ĥ : Rn → Y , then the induced map h∗ : π1(A)→ π1(Y ) is trivial.

Question 10. Describe the three double coverings of RP 2 ∨ S1 (not necessarily by an
explicit formula; a diagram may suffice) and determine which (if any) is regular.

Question 11. Prove that there are no covering maps from S2 to S1 × S1 or from S1 × S1

to S2.

Question 12. Let X be the union S2 ∪ L of the standard sphere S2 + {(x, y, z) ∈ R3 :
x2 + y2 + z2 = 1} ⊂ R3 with the vertical segment L + {(0, 0, z) : |z| ≤ 1}. Determine
π1(X, b), where b := (0, 0, 1).

Question 13. Determine the fundamental group of the Klein bottle RP 2#RP 2. Justify
your answer.




































































