LINEAR ALGEBRA DIAGNOSTIC EXAM

MAY 2024

All vector spaces are assumed to be finite-dimensional, over the complex numbers, and all matrices are assumed to be complex.

- **1.** Let V, W, and U be n-dimensional vector spaces and let $T: V \to W$ and $S: W \to U$ be linear transformations such that ST = 0. Prove that $\operatorname{rank}(T) + \operatorname{rank}(S) \leq n$.
- **2.** Let V be a 4-dimensional vector space containing 3-dimensional subspaces U and W. Prove that there exists a basis $\{v_1, v_2, v_3, v_4\}$ for V such that $v_1, v_2 \in U \cap W$.
- **3.** Let $\{v_1, v_2, v_3\}$ be an linearly independent set of three vectors in the inner product vector space V. Prove that there is a vector $w \in V$ such that $\langle w, v_1 \rangle = \langle w, v_2 \rangle = 0$ and $\langle w, v_3 \rangle = 1$.
- **4.** Let A be an $n \times n$ matrix and suppose that v is a non-zero eigenvector for both A and A^* . Prove that the eigenvalue corresponding to v for A is the complex conjugate of the eigenvalue corresponding to v for A^* .
- **5.** Let V be a 4-dimensional vector space and let $T:V\to V$ be an operator with minimal polynomial equal to x^4 . Prove that there is a vector $v\in V$ such that $\{v,T(v),T^2(v),T^3(v)\}$ is a basis of V.

[Hint: There is a basis \mathcal{B} such that the matrix $[T]_{\mathcal{B}}$ is in Jordan form.]

6. Suppose that A is a 5×5 matrix and -1, 2, and 3 are eigenvalues of A (but there may be others). If A has rank 4 and is not diagonalizable, then what are the possible Jordan canonical forms of A (up to reordering the blocks)?